
FIRE

WRF-ARW V3: User’s Guide A-1

 Appendix A: WRF-Fire

Table of Contents

• Introduction
• WRF-Fire in idealized cases
• Fire variables in namelist.input
• namelist.fire
• Running WRF-Fire on real data

◦ Building the code
◦ Fire variables in namelist.wps
◦ Geogrid
◦ Conversion to geogrid format
◦ Editing GEOGRID.TBL
◦ Ungrib and Metgrid
◦ Running real case and WRF-Fire

• Fire state variables
• WRF-Fire software

◦ WRF-Fire coding conventions
◦ Parallel execution
◦ Software layers
◦ Initialization in idealized case

Introduction

A wildland fire module named WRF-Fire has been added to WRF ARW to allow users to
model the growth of a wildland fire and the dynamic feedbacks with the atmosphere. It is
implemented as a physics package with two-way coupling between the fire behavior and
the atmospheric environment allowing the fire to alter the atmosphere surrounding it, i.e.
‘create its own weather’. Here we address the mechanics, options, parameters, and
datasets for using this module.

The wildland fire module is currently a simple two-dimensional model of a surface fire,
that is, a fire that spreads through fuels on the ground, such as grass, shrubs, and the litter
from trees that has fallen to the surface. It does not yet contain the algorithms needed to
represent crown fires, which consume and spread through the tree canopies. The user
specifies the time, location, and shape of a fire ignition. The evolution of the fireline, the
interface enclosing the burning region, is implemented by the level set method. The level
set function in WRF releases prior to WRF v4.0 was advanced in time by a Runge-Kutta

FIRE

WRF-ARW V3: User’s Guide A-2

(RK) method of second order, with spatial discretization by the first-order Godunov
scheme. A more accurate level set algorithm is available starting with WRF v4.0. This
new level set implementation uses a third-order RK scheme for temporal discretization,
consistent with the dynamical core of WRF. Spatial discretization of the level set
equation is performed using a fifth-order weighted essentially non-oscillatory (WENO)
scheme. A hybrid discretization method is used, which applies high-order discretization
in the vicinity of the fire front and switches to a first-order ENO scheme elsewhere for
computational efficiency. In addition, new capability has been implemented to solve a
reinitialization equation for the level set. All these level set developments result in a fire
perimeter propagation that is nearly grid independent and that considerably reduces the
error in solving the level set equations.

The rate at which this interface expands is calculated at all points along it using a point-
based semi-empirical formula for estimating the rate of spread of the surface fire based
upon the Rothermel (1972) formula, which calculates the fire rate of spread as a function
of local fuel conditions, wind, and terrain slope. A semi-empirical formula is used as a
parameterization since turbulent combustion cannot be resolved at the spatial scales of
atmospheric models; thus, all physical processes involved in propagating the fire are
assumed to be represented in this relationship. Importantly, the winds used to drive the
fire are interpolated from nearby low-level wind velocities, which are themselves
perturbed by the fire. Once the fireline has passed by, the ignited fuel continues to burn -
the mass of fuel is assumed to decay exponentially with time after ignition, the rate
depending on the size of the fuel particles making up the fuel complex: fine fuels such as
grass are consumed rapidly, while fuels with larger diameters such as twigs and downed
logs are consumed slowly. The fuel burned in each time step is converted to sensible and
latent heat source terms for the lowest levels of the WRF atmospheric model state, where
the water vapor source arises from the release of the intrinsic moisture in cellulosic fuels
and the additional moisture absorbed by fuels from their environment, the fuel moisture
content. The e-folding depth over which the heat and vapor distributed is set by the user,
based on results from wildland fire measurements. The fire may not progress to
locations where the local fuel moisture content is greater than the moisture content of
extinction.

Additional parameters and datasets beyond a standard WRF atmospheric simulation are
required and are described here. The surface fuel available to be burned at each point is
categorized using the Anderson classification system for “fuel models” (3 grass-
dominated types, 4 shrub-dominated types, 3 types of forest litter, and 3 levels of logging
slash) which we will henceforth refer to as “fuel categories” to limit confusion. Each of
these fuel categories is assigned a set of typical properties consisting of the fuel load (the
mass per unit area) and numerous physical properties having to do with fuel geometry,
arrangement, and physical makeup. The user may make the fuels spatially homogeneous
by using one fuel category for the whole domain, alter fuel properties, add custom fuel
categories, or (for real data experiments) project a spatially heterogeneous map of fuel
categories onto the domain from fuel mapping datasets. The user also sets the number of

FIRE

WRF-ARW V3: User’s Guide A-3

ignitions, their time, location, and shape, and the fuel moisture content, an important
factor in fire behavior.

One time step of the fire model is performed for every WRF time step. The fire model
runs on a refined grid that covers the same region as the innermost WRF domain. The fire
module supports both distributed and shared memory parallel execution.

Other References

• Users may wish to review Anderson’s fuel classification system (Anderson, H. E.
1982. Aids to determining fuel models for estimating fire behavior. USDA For.
Serv. Gen. Tech. Rep. INT-122, 22p. Intermt. For. and Range Exp. Stn., Ogden,
Utah 84401) at http://www.fs.fed.us/rm/pubs_int/int_gtr122.pdf (verified 1/4/10).

• The original report introducing Rothermel’s semi-empirical formulas (Rothermel,
R. C. 1972. A mathematical model for predicting fire spread in wildland fuels.
Res. Pap. INT-115. Ogden, UT: U.S. Department of Agriculture, Intermountain
Forest and Range Experiment Station. 40 p.) is available at
http://www.treesearch.fs.fed.us/pubs/32533 (verified 1/4/10).

• The following paper describes the WRF-Fire module and applies WRF with
WRF-Fire in simulations to test the sensitivity of fire growth to environmental
factors such as wind speed, fuel load and moisture, and fuel model in the daytime
convective boundary layer:

Coen, J. L. , M. Cameron, J. Michalakes, E. Patton, P. Riggan, and K. Yedinak,
2013: WRF-Fire: Coupled Weather-Wildland Fire Modeling with the Weather
Research and Forecasting Model. J. Appl. Meteor. Climatol., 52, 16-38.
http://journals.ametsoc.org/doi/abs/10.1175/JAMC-D-12-023.1

• The following paper describes all the new developments included in the level set
algorithm implemented in WRF-Fire:

Muñoz-Esparza, D., Kosović, B., Jiménez, P.A. and Coen, J.L., 2018: An
Accurate Fire-Spread Algorithm in the Weather Research and Forecasting Model
Using the Level-Set Method. J. Adv. Model. Eart Syst., 10, 908-926.
https://doi.org/10.1002/2017MS001108

WRF-Fire in idealized cases

To perform a simulation including a fire, follow the installation instructions in Chapter 5
to configure WRF and set up the environment. For an idealized case, use

FIRE

WRF-ARW V3: User’s Guide A-4

./compile em_fire

to build WRF for one of the several supplied ideal examples. This will create the links
wrf.exe and ideal.exe in the directory test/em_fire.

The directory test/em_fire contains two fire test cases - hill_simple and
two_fires. The files necessary for running these are in the top-level em_fire
directory. To run a fire case, it will be necessary to have files named
'namelist.input' and 'input_sounding' in the em_fire/ directory. If you
wish to use one of the provided test cases, you will need to link them to their generic
names (for example, for the two_fires case):

ln -sf namelist.input_two_fires namelist.input

ln -sf input_sounding_two_fires input_sounding

Currently the default namelist.input file is linked to the hill_simple case. If
you wish to make your own test case, you will simply need to create the files
namelist.input and input_sounding that will correspond to your case (it is
advised to start by modifying an existing copy from another case).

Once you have the namelist.input and input_sounding linked to the correct
case files, you can run by typing:

./ideal.exe

./wrf.exe

The file namelist.input contains an additional section &fire with parameters of
the fire model and ignition coordinates. The file namelist.fire contains an
additional namelist used to enter custom fuel properties.

Fire variables in namelist.input

Variable names Value Description
&domains Domain definition
sr_x 10 The fire mesh is 10 times finer than the

innermost atmospheric mesh in the x
direction. This number must be even.

sr_y 10 The fire mesh is 10 times finer than the

FIRE

WRF-ARW V3: User’s Guide A-5

innermost atmospheric mesh in the y
direction. This number must be even.

&fire Fire ignition and fuel parameters
ifire 0 No fires will be simulated.
 1 Fires will be simulated, using the tracer

scheme to represent the flaming front
interface (not active).

 2 Fires will be simulated, using the level set
method to represent the movement of the
interface.

fire_fuel_read 0 How to set the fuel data
-1: real data from WPS

 0: set to a homogeneous distribution of
fire_fuel_cat everywhere

 1: The spatial distribution of fuel categories
is to be specified as a function of terrain
altitude. (The user specifies a custom
function.)

fire_num_ignitions 3 Number of ignition lines, max. 5 allowed
fire_ignition_start_x1 1000. x coordinate of the start point of the ignition

line 1. All ignition coordinates are given in m
from the lower left corner of the innermost
domain

fire_ignition_start_y1 500. x coordinate of the start point of the ignition
line 1

fire_ignition_end_x1 1000. y coordinate of the end point of the ignition
line 1. Point ignition (actually a small circle)
is obtained by specifying the end point the
same as the start point.

fire_ignition_end_y1 1900. y coordinate of the end point of the ignition
line 1

fire_ignition_radius1 18. Everything within
fire_ignition_radius1 meters from
the ignition location will be ignited.

fire_ignition_time1 2. Time of ignition in s since the start of the run
fire_ignition_start_x2

…

 Up to 5 ignition lines may be given. Ignition
parameters with the number higher than
fire_num_ignitions are ignored.

FIRE

WRF-ARW V3: User’s Guide A-6

fire_ignition_time5
fire_print_msg 1 0: no messages from the fire scheme

1: progress messages from the fire scheme
fire_print_file 0 0: no files written (leave as is)
 1: fire model state written every 10 s into

files that can be read in Matlab.
fire_tracer_smoke 0.02 parts per unit of burned fuel becoming smoke

(tracer_opt = 3), in gsmoke/kgair

There are several more variables in the namelist for developers’ use only to further
develop and tune the numerical methods. Do not alter unless directed to do so.

namelist.fire

This file serves to redefine the fuel categories if the user wishes to alter the default fuel
properties.

Variable names Description
&fuel_scalars Scalar fuel constants
cmbcnst The energy released per unit fuel burned for cellulosic fuels

(constant, 1.7433e7 J kg-1).
hfgl The threshold heat flux from a surface fire at which point a

canopy fire is ignited above (in W m-2).
fuelmc_g Surface fuel, fuel moisture content (in percent expressed in

decimal form, from 0.00 – 1.00).
nfuelcats Number of fuel categories defined (default: 13)
no_fuel_cat The number of the dummy fuel category specified to be used

where there is no fuel
&fuel_categories Domain specifications
fgi The initial mass loading of surface fuel (in kg m-2) in each fuel

category
fueldepthm Fuel depth (m)
savr Fuel surface-area-to-volume-ratio (m-1)
fuelmce Fuel moisture content of extinction (in percent expressed in

decimal form, from 0.00 – 1.00).
fueldens Fuel particle density lb ft-3 (32 if solid, 19 if rotten)
st Fuel particle total mineral content. (kg minerals/kg wood)
se Fuel particle effective mineral content. (kg minerals – kg

silica)/kg wood

FIRE

WRF-ARW V3: User’s Guide A-7

weight Weighting parameter that determines the slope of the mass loss
curve. This can range from about 5 (fast burn up) to 1000 (i.e. a
40% decrease in mass over 10 minutes).

ichap Is this a chaparral category to be treated differently using an
empirical rate of spread relationship that depends only on wind
speed? (1: yes, this is a chaparral category and should be
treated differently; 0: no, this is not a chaparral category or
should not be treated differently). Primarily used for Fuel
Category 4.

Running WRF-Fire on real data

Building the code

Running WRF with real data is a complicated process of converting data formats and
interpolating to the model grid. This process is simplified by the WRF Preprocessing
System (WPS). The purpose of this section is to summarize the use of this system and to
highlight the differences in its use between fire and ordinary atmospheric simulations.
For more complete documentation of WPS, see Chapter 3 of the WRF-ARW User’s
Guide.

WPS consists of three utility programs: geogrid.exe, ungrib.exe, and
metgrid.exe. Each program is designed to take existing data sets and
convert/interpolate them into an intermediate format. The build system for WPS is
similar to that of WRF. NetCDF must be installed and the environment variable
NETCDF should be set to the installation prefix. Run the configure script in the main
WPS directory, pick a configuration option from the list, and then run compile. Note that
WRF itself must be built prior to compiling WPS. In addition, the build process assumes
that WRF exists in ../WRFV3/. WRF should be configured as described in Section 3
and compiled with the command

./compile em_real >& compile.log

The WPS can be configured from inside the top level directory wrf-fire/WPS with the
command

./configure

FIRE

WRF-ARW V3: User’s Guide A-8

and compiled in the same directory with the command

./compile >& compile.log

Upon successful completion the three binaries listed above should exist in the current
directory.
Because the WPS programs are, for the most part, not processor intensive, it is not
generally necessary to compile these programs for parallel execution, even if they do
support it. Typical usage of WRF with real data involves doing all of the preprocessing
work either locally on a workstation or on the head node of a supercomputer. The
intermediate files are all architecture independent, so they can be transferred between
computers safely. If you intend to use a supercomputer for the main simulation, it is
advisable to generate the WPS output locally and transfer the met_em files to the
computer you will be using for WRF-Fire. The met_em files are much smaller than the
wrfinput and wrfbdy files and can be transported easily. This also eases the process of
dealing with the dependencies of the python scripts described below because it may not
be easy or even possible to meet these requirements on a shared parallel computer.

Fire variables in namelist.wps

The simulation domain is described in the file namelist.wps. This namelist contains
four sections, one for each of the main binaries created in WPS and one shared among
them all. This file, as distributed with WRF-Fire, is set up for a test case useful for
testing, but in general one needs to modify it for each simulation domain. The following
table lists namelist options that can be modified. Other options in this file are generally
not necessary to change for WRF-Fire simulations. See the WRF-ARW User’s Guide for
more information.

Variable names Description
&share Shared name list options
max_dom Number of nested domains to use
start_date/end_dat
e

Starting/ending date and time to process atmospheric data in
the format YYYY-MM-DD_hh:mm:ss. These times should
coincide with reanalysis cycles for your atmospheric data
(hours 00,03,06,09,12, etc. for 3 hour NARR data). The
simulation window in which you are interested in running must
be inside this interval.

Subgrid_ratio_[xy] The refinement ratio from the atmospheric grid to the fire grid.
interval_seconds Number of seconds between each atmospheric dataset. (10800

for 3 hour NARR data)
&geogrid Domain specifications
parent_id When using nested grids, the parent of the current grid, or 0 if it

FIRE

WRF-ARW V3: User’s Guide A-9

is the highest level.
parent_grid_ratio The refinement ratio from the parent grid (ignored for top level

grid) (only 3 or 5 is supported by WRF)
[ij]_parent_start The indices on the parent grid of the lower left corner of the

current grid (ignored for top-level grid)
e_we/e_sn The size of the grid in the x/y axis
dx/dy Resolution of the grid in the x/y axis
map_proj,
true_lat[12],
stand_lon

Projection specifications. Lambert is typically used for central
latitudes such as the continental US. For small domains, the
projection used does not matter much.

ref_x/ref_y Grid index of a reference point with known geographic
location. Defaults to the center of the domain.

ref_lon/ref_lat The location (longitude/latitude) of the reference point.
geog_data_path Absolute or relative path to geogrid data released with WPS

(http://www2.mmm.ucar.edu/wrf/src/wps_files/geog_v3.1.tar.g
z)

Geogrid

The geogrid executable acts exclusively on static datasets (those that don’t change from
day to day) such as surface elevation and land use. Because these datasets are static, they
can be obtained as a single set of files from the main WPS distribution website in
resolutions of 10 minutes, 2 minutes, and 30 seconds. The geogrid executable extracts
from these global data sets what it needs for the current domain. While resolutions of
this magnitude are acceptable for ordinary atmospheric simulations, these datasets are too
coarse for a high-resolution fire simulation. In particular, a WRF-Fire simulation will
require two additional data sets not present in the standard data.

NFUEL_CAT

The variable NFUEL_CAT contains Anderson 13 fuel category data. This data can be
obtained for the US from the USGS seamless data access server at:
http://landfire.cr.usgs.gov/viewer/. Using the zooming and panning controls, the user can
select the desired region with LANDFIRE 13 Anderson Fire Behavior Fuel Models box
selected. This will open a new window where the user can request the data in specific
projections and data formats.

ZSF
The variable ZSF contains high resolution terrain height information similar to that in the
HGT variable present in atmospheric simulations; however, the standard topographical
data set is only available at a maximum resolution of 30 arc seconds (about 900 meters).
For a simulation using the WRF-Fire routines, data resolution of at least 1/3 of an arc
second is desirable to include the effect of local terrain slope on the rate of spread. Such
a dataset is available for the US at https://viewer.nationalmap.gov/basic/. This is another
USGS seamless data access server similar to that of LANDFIRE. The desired dataset on

FIRE

WRF-ARW V3: User’s Guide A-10

this server is listed under elevation and is called 1/3 arc-second DEM. 1 arc second data
is also available at the same data server.

Conversion to geogrid format

Once one has collected the necessary data from USGS servers or elsewhere, it is
necessary to convert it from the given format (such as geotiff, Arcgrid, etc.) into geogrid
format. The format specification of the geogrid format is given in the WPS section of the
WRF users guide. The process of this conversion is somewhat technical; however, work
is in progress to automate it.

Editing GEOGRID.TBL

In order to include your custom data into the WPS output, you must add a description of
it in the GEOGRID.TBL file, which is located, by default, in the geogrid subdirectory of
the main WPS distribution. In addition to the standard options described in the WPS
users guide, there is one additional option that is necessary for defining data for fire grid
variables. For them, there is a subgrid option, which is off by default. For fire grid data,
one should add the option subgrid=yes to indicate that the variable should be defined on a
refined subgrid with a refinement ratio defined by the subgrid_ratio_[xy] option in the
WPS namelist. For example, typical table entries would appear as follows:

This table assumes that the converted data resides as a subdirectory of the standard data
directory given in the namelist under the option geog_data_path. The NFUEL_CAT data
should reside in landfire/ and ZSF in highres_elev/. In general, the only options that
should be modified by the user are the rel_path or abs_path options.
Once the data has been obtained and converted and the geogrid table has been properly
set up, the user can run:
./geogrid.exe

===============================
name=NFUEL_CAT
 priority=1
 dest_type=categorical
 dominant_only=NFUEL_CAT
 z_dim_name=fuel_cat
 halt_on_missing=yes

interp_option=default:nearest_neighbor+average_16pt+search
 rel_path=default:landfire/
 subgrid=yes
==============================
name = ZSF
 priority = 1
 dest_type = continuous
 halt_on_missing=yes
 interp_option = default:four_pt
 rel_path=default:highres_elev/
 subgrid=yes
==============================

FIRE

WRF-ARW V3: User’s Guide A-11

which will create files such as geo_em.d01.nc that contain the interpolated static data
fields.

Ungrib and Metgrid

The ungrib executable performs initial processing on atmospheric data. There are many
different datasets that can be used as input to ungrib. One must obtain this data manually
for a given simulation. Because fire simulations will be at a much higher resolution than
most atmospheric simulations, it is advisable to get as high resolution data as possible.
The 32 km resolution data from the North American Regional Reanalysis (NARR) is
likely a good choice. This data is available freely from
https://dss.ucar.edu/datazone/dsszone/ds608.0/NARR/3HRLY_TAR/. For real data WRF
runs, three individual datasets from this website are required: 3d, flx, and sfc. To use
them, download the files for the appropriate date/time and extract them somewhere on
your file system. The files have the naming convention, NARR3D_200903_0103.tar.
NARR indicates it comes from the NARR model, 3D indicates that it is the atmospheric
data fields, and 200903_0103 indicates that it contains data from March 1st through 3rd of
2009. Once these files are extracted, they must be linked into the main WPS directory
with the command link_grib.csh. It takes as arguments all of the files extracted from the
dataset. For example, if you extracted these files to /home/joe/mydata, then you
would issue the command:

./link_grib.csh /home/joe/mydata/*
into the top level WPS directory. Each atmospheric dataset requires a descriptor table
known as a variable table to be present. WPS comes with several variable tables that
work with most major data sources. These files reside in
WPS/ungrib/Variable_Tables/. The appropriate file must be linked into the top
level WPS directory as the file Vtable. For NARR data, type:

ln –sf ungrib/Variable_Tables/Vtable.NARR Vtable

Once this has been done, everything should be set up properly to run the ungrib
command:

./ungrib.exe

Finally, the program metgrid combines the output of ungrib and geogrid to create a series
of files, which can be read by WRF’s real.exe. This is accomplished by

./metgrid.exe

Assuming everything completed successfully, you should now have a number of files
named something like met_em.d01.2009-03-01_12:00:00.nc. These should
be copied or linked to your WRFV3/test/em_real directory. If any errors occur
during execution of ungrib or metgrid, then make sure you have downloaded all of the

FIRE

WRF-ARW V3: User’s Guide A-12

necessary atmospheric data and that the variable table and namelist are configured
properly.

Running real case and WRF-Fire

First copy or link the met_em files generated by metgrid into test/em_real. If the
simulation is being done locally, this can be accomplished by running in wrf-
fire/WRFV3/test/em_real

ln –sf ../../../WPS/met_em* .

The namelist for WRF in the file namelist.input must now be edited to reflect the
domain configured in WPS. In addition to the fire-specific settings listed in Section 4.3
regarding the ideal simulation, a number of other settings must be considered as listed
below. See Chapter 5 for more details on these settings.

Variable Description
&time_control
start_xxx/end_xxx These describe the starting and ending date and time

of the simulation. They must coincide with the
start_date/end_date given in namelist.wps.

run_xxx The amount of time to run the simulation.
interval_seconds Must coincide with interval seconds from

namelist.wps.
restart_interval A restart file will be generated every x minutes. The

simulation can begin from a restart file rather than
wrfinput. This is controlled by the namelist variable
‘restart’.

&domains All grid settings must match those given in the
geogrid section of namelist.wps.

num_metgrid_levels The number of vertical levels of the atmospheric data
being used. This can be determined from the met_em
files:
ncdump -h met_em* | grep
'num_metgrid_levels ='

sr_x/sr_y Fire grid refinement. This must match that given in
namelist.wps as subgrid_ratio_x/subgrid_ratio_y.

p_top_requested The default is 5000, but may need to be edited if there
is an error executing real. If so, just set this to
whatever it tells you in the error message.

Once the namelist is properly configured, run the real executable:

FIRE

WRF-ARW V3: User’s Guide A-13

./real.exe

and then run wrf:

./wrf.exe

Fire state variables

A number of array variables were added to the registry to the WRF state in order to
support the fire model. They are available in the wrfout* files created when running
WRF. All fire array variables are based at the centers of the fire grid cells. Their values in
the strips at the upper end of width sr_x in the x direction and sr_y in the y direction
are unused and are set to zero by WRF.

The following variables can be used to interpret the fire model output.

LFN level set function. Node (i,j) is on fire if

LFN(i,j)<=0
FXLONG, FXLAT longitude and latitude of the nodes
FGRNHFX ground heat flux from the fire (W/m2),

averaged over the cell
FGRNQFX ground heat flux from the fire (W/m2),

averaged over the cell
ZSF terrain elevation above sea level (m)
UF,VF surface wind
FIRE_AREA approximate part of the area of the cell that

is on fire, between 0 and 1

WRF-Fire software

This section is intended for programmers who wish to modify or extend the fire module.

WRF-Fire coding conventions

The fire module resides in WRF physics layer and conforms to WRF Coding
Conventions. The wildland fire-related subroutines maintain the conventions as they
apply to on atmospheric grids, adapts them to 2D surface-based computations, and
follows analogous conventions on the fire grid. In particular, these routines may not
maintain any variables or arrays that persist between calls, and may not use common
blocks, allocatable variables, or pointer variables. Work arrays with variable bounds may
be declared only as automatic; thus, they are freed between on exit from the subroutine

FIRE

WRF-ARW V3: User’s Guide A-14

where they are declared. All grid-sized arrays that should persist between calls to the
wildland fire-related subroutines must be created in WRF through the registry
mechanism, and passed to these as arguments.

In addition, the wildland fire-related subroutines may not call any WRF routines directly
but only through a utility layer. All variables in the wildland fire-related subroutines are
based at grid centers. Grid dimensions are passed in argument lists as

ifds,ifde,jfds,jfde, & ! fire domain dims
ifms,ifme,jfms,jfme, & ! fire memory dims
ifps,ifpe,jfps,jfpe, & ! fire patch dims (may be omitted)
ifts,ifte,jfts,jfte, & ! fire tile dims

Atmosphere grid 2D variables are declared with dimension(ims:ime, jms:jme).
Fire grid variables are declared with dimension(ifms:ifme, jfms:jfme).
Loops on the fire grid are always over a tile. The index variable names, the order of the
loops, and the bounds are required exactly as in the code fragment below.
do j=jfts,jfte

do i=ifts,ifte
 fire_variable(i,j)=…

In loops that need to index more than one grid at the same time (such as computations on
a submesh, or interpolation between atmosphere and fire) the index variable names must
always begin with i j.

Parallel execution

In these routines, all computational subroutines are called from a thread that services a
single tile. There is no code running on a patch. Loops may update only array entries
within in the tile but they may read other array entries in adjacent tiles, for example for
interpolation or finite differences. The values of arrays that may be read between adjacent
tiles are synchronized outside of the computational routines. Consequently, the values of
a variable that was just updated may be used from an adjacent tile only in the next call to
the computational subroutines, after the required synchronization was done outside.
Synchronization within a patch is by exiting the OpenMP loop. Synchronization of the
values between patches is by explicit HALO calls on the required variables and with the
required width. HALOs are provided by the WRF infrastructure and specified in the
registry.

The overall structure of the parallelism is spread over multiple software layers,
subroutines and source files. The computation is organized in stages, controlled by the
value of ifun.

FIRE

WRF-ARW V3: User’s Guide A-15

! the code executes on a single patch
! if distributed memory, we are one of the MPI processes

do ifun=ifun_start,ifun_end ! what to do

 if(ifun.eq.1)then ! this HALO needed before stage ifun=1

#include "SOME_HALO.inc" ! communicate between patches
 endif
...
!$OMP PARALLEL DO
 do ij=1,num_tiles ! parallel loop over tiles

 if(ifun.eq.1)then ! one of the initialization stages
 call some_atmosphere_to_fire_interpolation(…)
 endif
 ...
 call fire_model(…,ifun,…) ! call the actual model
 ! for some values of ifun, fire_model may do nothing

 if(ifun.eq.6)then ! fire step done
 call some_fire_to_atmosphere_computation(…)
 endif

 enddo ! end parallel loop over tiles
 ! array variables are synchronized between tiles now

enddo ! end ifun loop

Software layers

The wildland fire-related subroutines are called from WRF file
dyn_em/module_first_rk_step_part1. The output of these routines (the heat
and moisture tendencies) are stored on exit from these routines and added to the
tendencies in WRF later in a call to update_phy_ten from
dyn_em/module_first_rk_step_part2
The wildland fire-related subroutines themselves consist of the following files in the
phys directory, each constituting a distinct software layer:

module_fr_fire_driver.F Fire driver layer. These subroutines are called
directly from WRF. All parallelism is contained here. The rest of the routines are called
on a single tile.

module_fr_fire_atm.F Atmosphere-fire interaction layer. These routines are
the interface between the fire and the atmosphere and interpolate between them.

FIRE

WRF-ARW V3: User’s Guide A-16

module_fr_fire_model.F Fire front representation and advancement layer.
This routine calls the core and the physics layers. Formulated in terms of the fire grid
only, it is intended to be independent of particular mathematical methods used in the core
layer.

module_fr_fire_core.F Core layer: This contains numerical algorithms for fire
front advancement and the rate of fuel consumption calculation. It calls the physics layer
for the fire spread rate.

module_fr_fire_phys.F Fire physics layer. This contains algorithms for
calculating the rate of spread of the fire front in terms of the fire environment and
associated initialization.

module_fr_fire_util.F Utilities layer. This layer is used by all other layers. It
declares scalar switches and parameters and contains all interpolation and other service
routines that may be general in nature and the interface to WRF routines such as
messages and error exits. To maintain independence in WRF, this is the only layer that
may call any WRF routines.

fr_fire_params_args.h This include file contains subroutine argument lists to
pass through all arguments that are needed in the fire rate of spread algorithm in the
physics layer. It is only necessary to write this long argument list once given the WRF
requirement that arrays may be passed as arguments only, and not shared globally, say, as
pointers. Also, it maintains the independence of the core layer from the physics layer and
the modularity of the wildland fire-related subroutines in WRF.

fr_fire_params_decl.h Include file with the matching declarations.

Initialization in idealized case

The initialization of model arrays in the idealized case is done in the file
dyn_em/module_initialize_fire.F

This file was adapted from other initialization files in the same directory and extended to
deal with wildland fire-related variables.

a. Vertically stretched grid

Because of the fine meshes used in fire modeling, the user may wish to search for the text
grid%znw(k) and modify the following loop to assure a desired refinement of the
vertical atmospheric grid near the Earth surface:

FIRE

WRF-ARW V3: User’s Guide A-17

DO k=1, kde
grid%znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) &
- exp(-1./z_scale))/(1.-exp(-1./z_scale)

ENDDO

b Topography

The relevant code is found by searching for the text

!******* set terrain height

The terrain height needs to be set consistently in the atmosphere model in the array
grid%ht and in the fire model array grid%zsf at the finer resolution. In the supplied
examples, controlled by namelist.input variables fire_mountain_type,
fire_mountain_start_x, fire_mountain_start_y,
fire_mountain_end_x, fire_mountain_end_y, and
fire_mountain_height, both arrays are set consistently from an algebraic formula
(a cosine hill or a cosine ridge).

It is possible, though not recommended, to set only grid%ht and have the fire module
interpolate the terrain height from the atmosphere mesh by specifying
fire_topo_from_atm=1 in namelist.input. This will result in blocky terrain with
discontinuous terrain gradients, which will affect fire spread patterns.

Note that in a real run, the user should leave fire_topo_from_atm=0 and both
terrain height arrays are set consistently at the best available resolution from the WPS.

The user should not modify the code immediately after the setting of the terrain height
arrays, which initializes a number of atmosphere variables consistently with the terrain
height.

FIRE

WRF-ARW V3: User’s Guide A-18

