POST-PROCESSING

Chapter 9: Post-Processing Ultilities

Table of Contents

Introduction
NCL

RIP
ARWpost
uprp
VAPOR

Introduction

There are a number of visualization tools available to display WRF-ARW
(http://www?2.mmm.ucar.edu/wrf/users) model data. Model data in netCDF format can
essentially be displayed using any tool capable of displaying this data format.

Currently the following post-processing utilities are supported: NCL, RIP, ARWpost
(converter to GrADS), UPP, and VAPOR.

NCL, RIP, ARWpost and VAPOR can currently only read data in netCDF format, while
UPP can read data in netCDF and binary format.

Required software

The only library that is always required is the netCDF package from Unidata
(http://www.unidata.ucar.edu/): login > Downloads > NetCDF - registration login
required).

netCDF stands for Network Common Data Form. This format is platform independent,
1.e., data files can be read on both big-endian and little-endian computers, regardless of
where the file was created. To use the netCDF libraries, ensure that the paths to these
libraries are set correct in your login scripts as well as all Makefiles.

Additional libraries required by each of the supported post-processing packages:

NCL (http://www.ncl.ucar.edu)

GrADS (http://erads.iges.org/home.html)

GEMPAK (http://www.unidata.ucar.edu/software/gempak/)
VAPOR (http://www.vapor.ucar.edu)

WRF-ARW V4: User’s Guide 9-1

POST-PROCESSING

NCL

With the use of NCL Libraries (http://www.ncl.ucar.edu), WRF-ARW data can easily
be displayed.

The information on these pages has been put together to help users generate NCL scripts
to display their WRF-ARW model data.

Some example scripts are available online
(https://www?2.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/NCL_examples.php),
but in order to fully utilize the functionality of the NCL Libraries, users should adapt
these for their own needs, or write their own scripts.

NCL can process WRF-ARW static, input and output files, as well as WRFDA output
data. Both single and double precision data can be processed.

WRF and NCL

WRF-NCL processing scripts are incorporated into the NCL Libraries, thus only the
NCL Libraries are needed.

Major WRF-ARW-related upgrades have been added to the NCL libraries in
version 6.1.0; therefore, in order to use many of the functions, NCL version 6.1.0 or
higher is required.

Special functions are provided to simplify the plotting of WRF-ARW data. These
functions are located in:

"$NCARG_ROOT/lib/ncarg/nclscripts/wrf/ WRFUserARW.ncl".

Users are encouraged to view and edit this file for their own needs. If users wish to edit
this file, but do not have write permission, they should simply copy the file to a local
directory, edit and load the new version, when running NCL scripts.

Special NCL built-in functions have been added to the NCL libraries to help users
calculate basic diagnostics for WRF-ARW data.

All the FORTRAN subroutines used for diagnostics and interpolation (previously located
in wrf user fortran_util (.f) has been re-coded into NCL in-line functions. This means
users no longer need to compile these routines.

WRF-ARW V4: User’s Guide 9-2

POST-PROCESSING

What is NCL

The NCAR Command Language (NCL) is a free, interpreted language designed
specifically for scientific data processing and visualization. NCL has robust file input and
output. It can read in netCDF, HDF4, HDF4-EOS, GRIB, binary and ASCII data. The
graphics are world-class and highly customizable.

It runs on many different operating systems including Solaris, AIX, IRIX, Linux,
MacOSX, Dec Alpha, and Cygwin/X running on Windows. The NCL binaries are freely
available at: http://www.ncl.ucar.edu/Download/

To read more about NCL, visit: http://www.ncl.ucar.edu/overview.shtml

Necessary software
NCL libraries, version 6.1.0 or higher.
Environment Variable

Set the environment variable NCARG ROOT to the location where you installed the
NCL libraries. Typically (for cshrc shell):

setenv NCARG ROOT /usr/local/ncl

Jhluresfile

Create a file called .hluresfile in your SHOME directory. This file controls the color,
background, fonts, and basic size of your plot. For more information regarding this file,
see: http://www.ncl.ucar.edu/Document/Graphics/hlures.shtml.

NOTE: This file must reside in your SHOME directory and not where you plan on
running NCL.

Below is the .hluresfile used in the example scripts posted on the web (scripts are
available at: http://www2.mmm.ucar.edu/wrflusers/graphics/NCL/NCL.htm). 1f a
different color table is used, the plots will appear different. Copy the following to your
~/.hluresfile. (4 copy of this file is available at:

https://www?2.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/NCL _basics.php).

*wkColorMap : BlAgGrYeOrReVi200
*wkBackgroundColor : white
*wkForegroundColor : black
*FuncCode : -~

*TextFuncCode : -~

WRF-ARW V4: User’s Guide 9-3

POST-PROCESSING

*Font : helvetica
*wkWidth : 900
*wkHeight : 900

NOTE:
If your image has a black background with white lettering, your .hluresfile has
not been created correctly, or it is in the wrong location.
wkColorMap, as set in your .hluresfile can be overwritten in any NCL script with
the use of the function “gsmn_define colormap”, so you do not need to change
your .hluresfile if you just want to change the color map for a single plot.

Create NCL scripts

The basic outline of any NCL script will look as follows:

load external functions and procedures

begin
; Open input file(s)
; Open graphical output
; Read variables
; Set up plot resources & Create plots
; Output graphics

end

For example, let’s create a script to plot Surface Temperature, Sea Level Pressure and
Wind as shown in the picture below.

REAL-TIME WRF Init: 2000-01-24_12:00:00
Valid: 2000-01-24_12:00:00

Surface Temperature (F)
Sea LevolmSPloﬂum (hPa)
)

42°N

90°W B85"W 80"W 75w
Sea Level Pressure Contours: 900 1o 1100 by 4

Surface Temperature {F)
20 -10 0 10 20 30 40 S50 60 70 80 90

WRF-ARW V4: User’s Guide 9-4

POST-PROCESSING

; load functions and procedures
load "$NCARG ROOT/lib/ncarg/nclscripts/csm/gsn _code.ncl"
load "$NCARG ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl"

begin

; WRF ARW input file (NOTE, your wrfout file does not need
; the .nc, but NCL needs it so make sure to add it in the
line below)

a = addfile("../wrfout d01 2000-01-24 12:00:00.nc","r")

~.

; Output on screen. Output will be called "plt Surfacel”
type = "x11"
wks = gsn open wks(type,"plt Surfacel")

; Set basic resources

res = True

res@MainTitle = "REAL-TIME WRE" ; Give plot a main title
res@Footer = False ; Set Footers off
pltres = True ; Plotting resources
mpres = True ; Map resources
times = wrf user getvar(a,"times",-1)) ; get times in the file
it =0 ; only interested in first time
res@TimeLabel = times (it) ; keep some time information

; Get wvariables

slp = wrf user getvar(a,"slp",it) Get slp
wrf smooth 2d(slp, 3) ; Smooth slp
t2 = wrf user getvar(a,"T2",it) ; Get T2 (deg K)
tc2 = t2-273.16 ; Convert to deg C
tf2 = 1.8*tc2+32. ; Convert to deg F
tf2@description = "Surface Temperature"
tf2@units = "F"
ul0 = wrf user getvar(a,"Ul0",it) ; Get Ul0
v1l0 = wrf user getvar(a,"V10",it) ; Get V10
ul0 = ul0*1.94386 ; Convert to knots
v10 = v10*1.94386
ulO0@units = "kts"
v10@units = "kts"

WRF-ARW V4: User’s Guide 9-5

POST-PROCESSING

; Plotting options for T

opts = res ; Add basic resources
opts@cnFillOn = True ; Shaded plot
opts@ContourParameters = (/ -20., 90., 5./) ; Contour intervals
opts@gsnSpreadColorkEnd = -3

contour tc = wrf contour(a,wks,tf2,opts) ; Create plot

delete (opts)

; Plotting options for SLP

opts = res ; Add basic resources
opts@cnLineColor = "Blue" ; Set line color
opts@cnHighLabelsOn = True ; Set labels
opts@cnLowLabelsOn = True

opts@ContourParameters = (/ 900.,1100.,4./) ; Contour intervals
contour psl = wrf contour(a,wks,slp,opts) ; Create plot

delete (opts)

; Plotting options for Wind Vectors

opts = res ; Add basic resources
opts@FieldTitle = "Winds" ; Overwrite the field title
opts@NumVectors = 47 ; Density of wind barbs
vector = wrf vector (a,wks,ul0,v10,opts) ; Create plot

delete (opts)

; MAKE PLOTS
plot = wrf map overlays(a,wks, \
(/contour_tc,contour_psl,vector/),pltres,mpres)

end

Extra sample scripts are available at:

https://www?2.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/NCL/NCL_examples.php

Run NCL scripts
1. Ensure NCL is successfully installed on your computer.

2. Ensure that the environment variable NCARG ROOT is set to the location where
NCL is installed on your computer. Typically (for cshrc shell), the command will

WRF-ARW V4: User’s Guide 9-6

POST-PROCESSING

look as follows:

setenv NCARG ROOT /usr/local/ncl
3. Create an NCL plotting script.

4. Run the NCL script you created:

ncl NCL script

The output type created with this command is controlled by the line:
wks = gsn_open_wk (type,"Output”) ; inside the NCL script
where #ype can be x11, pdf, ncgm, ps, or eps

For high quality images, create pdf, ps, or eps images directly via the ncl scripts (type =
pdf/ ps / eps)

See the Tools section in Chapter 10 of this User’s Guide for more information concerning
other types of graphical formats and conversions between graphical formats.

Functions / Procedures under "SNCARG_ROOT/lib/ncarg/nclscripts/wrf/"
(WRFUserARW.ncl)

wrf user_getvar (nc_file, fld, if)
Usage: ter = wrf user getvar (a, “HGT”, 0)

Get fields from a netCDF file for:
e Any given time by setting it to the time required.
e For all times in the input file(s), by setting it = -1
e A list of times from the input file(s), by setting it to
(/start_time,end_time,interval/) (e.g. (/0,10,2/)).
e A list of times from the input file(s), by setting it to the list required (e.g.
(/1,3,7,10/)).

Any field available in the netCDF file can be extracted.

fld is case sensitive. The policy adapted during development was to set all diagnostic
variables, calculated by NCL, to lower-case to distinguish them from fields directly
available from the netCDF files.

WRF-ARW V4: User’s Guide 9-7

POST-PROCESSING

List of available diagnostics:

avo Absolute Vorticity [10-5 s-1]

pvo Potential Vorticity [PVU]

eth Equivalent Potential Ttemperature [K]
cape 2d Returns 2D fields mcape/mcin/Icl/lfc
cape 3d Returns 3D fields cape/cin

dbz Reflectivity [dBZ]

mdbz Maximum Reflectivity [dBZ]
geopt/geopotential | Full Model Geopotential [m2 s-2]
helicity Storm Relative Helicity [m-2/s-2]

updraft helicity

Updraft Helicity [m-2/s-2]

lat

Latitude (will return either XLAT or XLAT M,
depending on which is available)

lon Longitude (will return either XLONG or XLONG M,
depending on which is available)

omg Omega

p/pres Full Model Pressure [Pa]

pressure Full Model Pressure [hPa]

pw Precipitable Water

rh2 2m Relative Humidity [%]

rh Relative Humidity [%]

slp Sea Level Pressure [hPa]

ter Model Terrain Height [m] (will return either HGT or HGT M,
depending on which is available)

td2 2m Dew Point Temperature [C]

td Dew Point Temperature [C]

tc Temperature [C]

tk Temperature [K]

th/theta Potential Temperature [K]

tv Virtual Temperature

twb Wetbulb Temperature

times Times in file (note this return strings - recommended)

Times Times in file (note this return characters)

ua U component of wind on mass points

va V component of wind on mass points

wa W component of wind on mass points

uvmet10 10m U and V components of wind rotated to earth coordinates

uvmet U and V components of wind rotated to earth coordinates

z/height Full Model Height [m]

WRF-ARW V4: User’s Guide

POST-PROCESSING

wrf user_list times (nc_file)
Usage: times = wrf user list times (a)

Obtain a list of times available in the input file. The function returns a 1D array
containing the times (type: character) in the input file.
This is an outdated function — best to use wrf user getvar(nc_file, "times”,it)

wrf_contour (nc_file, wks, data, res)
Usage: contour = wrf _contour (a, wks, ter, opts)

Returns a graphic (contour), of the data to be contoured. This graphic is only created, but
not plotted to a wks. This enables a user to generate many such graphics and overlay
them, before plotting the resulting picture to the wks.

The returned graphic (contour) does not contain map information, and can therefore be
used for both real and idealized data cases.

This function can plot both line contours and shaded contours. Default is line contours.

Many resources are set for a user, and most can be overwritten. Below is a list of
resources you may want to consider changing before generating your own graphics:

Resources unique to ARW WRF Model data

opts@MainTitle : Controls main title on the plot.

opts@MainTitlePos : Main title position — Left/Right/Center. Default is Left.
opts@NoHeaderFooter : Switch off all Headers and Footers.

opts@Footer : Add some model information to the plot as a footer. Default is True.
opts@InitTime : Plot initial time on graphic. Default is True. If True, the initial time will
be extracted from the input file.

opts@ValidTime : Plot valid time on graphic. Default is True. A user must set
opts@TimeLabel to the correct time.

opts@TimeLabel : Time to plot as valid time.

opts@TimePos : Time position — Left/Right. Default is “Right”.
opts@ContourParameters : A single value is treated as an interval. Three values
represent: Start, End, and Interval.

opts@FieldTitle : Overwrite the field title - if not set the field description is used for the
title.

opts@UnitLabel : Overwrite the field units - seldom needed as the units associated with
the field will be used.

opts@PlotLevellD : Use to add level information to the field title.

General NCL resources (most standard NCL options for cn and Ib can be set by the
user to overwrite the default values)

opts@cnFillOn : Set to True for shaded plots. Default is False.

opts@cnLineColor : Color of line plot.

WRF-ARW V4: User’s Guide 9-9

POST-PROCESSING

opts@IbTitleOn : Set to False to switch the title on the label bar off. Default is True.
opts@cnLevelSelectionMode ; opts (@cnLevels ; opts@cnFillColors ;
optr@cnConstFLabelOn : Can be used to set contour levels and colors manually.

wrf vector (nc_file, wks, data_u, data v, res)
Usage: vector = wrf vector (a, wks, ua, va, opts)

Returns a graphic (vector) of the data. This graphic is only created, but not plotted to a
wks. This enables a user to generate many graphics, and overlay them, before plotting the
resulting picture to the wks.

The returned graphic (vector) does not contain map information, and can therefore be
used for both real and idealized data cases.

Many resources are set for a user, and most can be overwritten. Below is a list of
resources you may want to consider changing before generating your own graphics:

Resources unique to ARW WRF Model data

opts@MainTitle : Controls main title on the plot.

opts@MainTitlePos : Main title position — Left/Right/Center. Default is Left.
opts@NoHeaderFooter : Switch off all Headers and Footers.

opts@Footer : Add some model information to the plot as a footer. Default is True.
opts@InitTime : Plot initial time on graphic. Default is True. If True, the initial time will
be extracted from the input file.

opts@ValidTime : Plot valid time on graphic. Default is True. A user must set
opts@TimeLabel to the correct time.

opts@TimeLabel : Time to plot as valid time.

opts@TimePos : Time position — Left/Right. Default is “Right”.
opts@ContourParameters : A single value is treated as an interval. Three values
represent: Start, End, and Interval.

opts@FieldTitle : Overwrite the field title - if not set the field description is used for the
title.

opts@UnitLabel : Overwrite the field units - seldom needed as the units associated with
the field will be used.

opts@PlotLevellD : Use to add level information to the field title.

opts@NumVectors : Density of wind vectors.

General NCL resources (most standard NCL options for vc can be set by the user to

overwrite the default values)
opts@vcGlyphStyle : Wind style. “WindBarb” is default.

WRF-ARW V4: User’s Guide 9-10

POST-PROCESSING

wrf _map_overlays (nc_file, wks, (/graphics/), pltres, mpres)
Usage: plot = wrf map_overlays (a, wks, (/contour,vector/), pltres, mpres)

Overlay contour and vector plots generated with wrf contour and wrf vector. Can
overlay any number of graphics. Overlays will be done in the order given, so always list
shaded plots before line or vector plots, to ensure the lines and vectors are visible and not
hidden behind the shaded plot.

A map background will automatically be added to the plot. Map details are controlled

with the mpres resource. Common map resources you may want to set are:

mpres@mpGeophysicalLineColor ; mpres@mpNationalLineColor ;
mpres@mpUSStateLineColor ; mpres@mpGridLineColor ;
mpres@mpLimbLineColor ; mpres@mpPerimLineColor

If you want to zoom into the plot, set mpres@ZoomlIn to True, and mpres@Xstart,
mpres@Xend, mpres@Ystart, and mpres@Yend to the corner x/y positions of the
zoomed plot.

pltres@NoTitles : Set to True to remove all field titles on a plot.
pltres@CommonTitle : Overwrite field titles with a common title for the overlaid plots.
Must set pltres@PlotTitle to desired new plot title.

If you want to generate images for a panel plot, set pltres@PanelPot to True.

If you want to add text/lines to the plot before advancing the frame, set
pltres@FramePlot to False. Add your text/lines directly after the call to the
wrf map_overlays function. Once you are done adding text/lines, advance the frame with
the command “frame (wks)”.

wrf overlays (nc_file, wks, (/graphics/), pltres)
Usage: plot = wrf overlays (a, wks, (/contour,vector/), pltres)

Overlay contour and vector plots generated with wrf contour and wrf vector. Can
overlay any number of graphics. Overlays will be done in the order given, so always list
shaded plots before line or vector plots, to ensure the lines and vectors are visible and not
hidden behind the shaded plot.

Typically used for idealized data or cross-sections, which does not have map background
information.

pltres@NoTitles : Set to True to remove all field titles on a plot.
pltres@CommonTitle : Overwrite field titles with a common title for the overlaid plots.

Must set pltres@PlotTitle to desired new plot title.

If you want to generate images for a panel plot, set pltres@PanelPot to True.

WRF-ARW V4: User’s Guide 9-11

POST-PROCESSING

If you want to add text/lines to the plot before advancing the frame, set
pltres@FramePlot to False. Add your text/lines directly after the call to the wrf overlays
function. Once you are done adding text/lines, advance the frame with the command
“frame (wks)”.

wrf _map (nc_file, wks, res)
Usage: map = wrf map (a, wks, opts)

Create a map background.
As maps are added to plots automatically via the wrf map_overlays function, this
function is seldom needed as a stand-alone.

wrf _user_intrp3d (var3d, H, plot_type, loc_param, angle, res)
This function is used for both horizontal and vertical interpolation.

var3d: The variable to interpolate. This can be an array of up to 5 dimensions. The 3
right-most dimensions must be bottom_top X south _north X west_east.

H: The field to interpolate to. Either pressure (hPa or Pa), or z (m). Dimensionality must
match var3d.

plot_type: “h” for horizontally- and “v” for vertically-interpolated plots.

loc_param: Can be a scalar, or an array, holding either 2 or 4 values.

For plot type = “h”:
This is a scalar representing the level to interpolate to.
Must match the field to interpolate to (H).
When interpolating to pressure, this can be in hPa or Pa (e.g. 500., to interpolate
to 500 hPa). When interpolating to height this must in in m (e.g. 2000., to
interpolate to 2 km).

For plot type = “v”:
This can be a pivot point though which a line is drawn — in this case a single x/y
point (2 values) is required. Or this can be a set of x/y points (4 values), indicating
start x/y and end x/y locations for the cross-section.

angle:
Set to 0., for plot type = “h”, or for plot type = “v” when start and end locations
of cross-section are supplied in loc_param.
If a single pivot point was supplied in loc_param, angle is the angle of the line
that will pass through the pivot point. Where: 0. is SN, and 90. is WE.

res:
Set to False for plot type = “h”, or for plot type = “v”’ when a single pivot point
is supplied. Set to True if start and end locations are supplied.

WRF-ARW V4: User’s Guide 9-12

POST-PROCESSING

wrf _user_intrp2d (var2d, loc_param, angle, res)
This function interpolates a 2D field along a given line.

var2d: The 2D field to interpolate. This can be an array of up to 3 dimensions. The 2
right-most dimensions must be south _north x west_east.

loc_param:
An array holding either 2 or 4 values.
This can be a pivot point though which a line is drawn - in this case a single x/y
point (2 values) is required. Or this can be a set of x/y points (4 values),
indicating start x/y and end x/y locations for the cross-section.

angle:
Set to 0 when start and end locations of the line are supplied in loc_param.
If a single pivot point is supplied in loc_param, angle is the angle of the line that
will pass through the pivot point. Where: 0. is SN, and 90. is WE.

res:
Set to False when a single pivot point is supplied. Set to True if start and end
locations are supplied.

wrf _user_ll to _ij (nc_file, lons, lats, res)
Usage: loc = wrf user latlon_to ij (a, 100., 40., res)
Usage: loc = wrf user latlon _to ij (a, (/100., 120./), (/40., 50./), res)

Converts a lon/lat location to the nearest x/y location. This function makes use of map
information to find the closest point; therefore this returned value may potentially be
outside the model domain.

lons/lats can be scalars or arrays.

Optional resources:

res@returnint - If set to False, the return values will be real (default is True with integer
return values)

res@useTime - Default is 0. Set if you want the reference longitude/latitudes to come
from a specific time - one will only use this for moving nest output, which has been
stored in a single file.

loc(0,:) is the x (WE) locations, and loc(1,:) the y (SN) locations.

wrf user_ij_to Il (nc file, i, j, res)
Usage: loc = wrf user latlon to ij (a, 10, 40, res)
Usage: loc = wrf user latlon_to ij (a, (/10, 12/), (/40, 50/), res)

WRF-ARW V4: User’s Guide 9-13

POST-PROCESSING

Convert an 1/j location to a lon/lat location. This function makes use of map information
to find the closest point, so this returned value may potentially be outside the model
domain.

1/j can be scalars or arrays.

Optional resources:
res@useTime - Default is 0. Set if you want the reference longitude/latitudes to come
from a specific time - one will only use this for moving nest output, which has been
stored in a single file.

loc(0,:) is the lons locations, and loc(1,:) the lats locations.

wrf user unstagger (varin, unstagDim)
This function unstaggers an array, and returns an array on ARW WRF mass points.

varin: Array to be unstaggered.

unstagDim: Dimension to unstagger. Must be either "X", "Y", or "Z". This is case
sensitive. If you do not use one of these strings, the returning array will be
unchanged.

wrf_wps_dom (wks, mpres, Inres, txres)

A function has been built into NCL to preview where a potential domain will be placed
(similar to plotgrids.exe from WPS).

The Inres and txres resources are standard NCL Line and Text resources. These are used
to add nests to the preview.

The mpres are used for standard map background resources like:
mpres@mpFillOn ; mpres@mpkFillColors ; mpres@mpGeophysicalLineColor ;
mpres@mpNationalLineColor ; mpres@mpUSStateLineColor ;
mpres@mpGridLineColor ; mpres@mpLimbLineColor ;
mpres@mpPerimLineColor

Its main function, however, is to set map resources to preview a domain. These resources
are similar to the resources set in WPS. Below is an example of how to display 3 nested
domains on a Lambert projection. (The output is shown below).

mpres@max dom =

3
mpres@parent id = (/ 1, 1, 2/)
mpres@parent grid ratio = (/ 1, 3, 3 /)
mpres@i parent start = (/ 1, 31, 15 /)
mpres@j parent start = (/ 1, 17, 20 /)

WRF-ARW V4: User’s Guide 9-14

POST-PROCESSING

mpres@e we
mpres@e sn
mpres@dx
mpres@dy

mpres@map proj
mpres@ref lat
mpres@ref lon
mpres@truelatl
mpres@truelat2
mpres@stand lon

(/ 74, 112, 133/)
(/ 61, 97, 133 /)
30000.

30000.

"lambert"

34.83

-81.03

30.0

60.0

-98.0

NCL built-in Functions

A number of NCL built-in functions have been created to help users calculate simple
diagnostics. Full descriptions of these functions are available on the NCL web site
(http://www.ncl.ucar.edu/Document/Functions/wrf.shtml).

wrf avo Calculates absolute vorticity.

wrf _cape 2d Computes convective available potential energy (CAPE),
convective inhibition (CIN), lifted condensation level (LCL), and
level of free convection (LFC).

wrf _cape 3d Computes convective available potential energy (CAPE) and
convective inhibition (CIN).

wrf dbz Calculates the equivalent reflectivity factor.

wrf eth Calculates equivalent potential temperature

wrf helicity Calculates storm relative helicity

wrf _ij to 1l Finds the longitude, latitude locations to the specified model grid

indices (i,j).

WRF-ARW V4: User’s Guide 9-15

POST-PROCESSING

wrf 1l _to_ij Finds the model grid indices (i,j) to the specified location(s) in
longitude and latitude.

wrf omega Calculates omega

wrf pvo Calculates potential vorticity.

wrf rh Calculates relative humidity.

wrf slp Calculates sea level pressure.

wrf smooth 2d

Smooth a given field.

wrf td Calculates dewpoint temperature in [C].

wrf tk Calculates temperature in [K].

wrf updraft helicity | Calculates updraft helicity

wrf uvmet Rotates u,v components of the wind to earth coordinates.

wrf virual temp

Calculates virtual temperature

wrf wetbulb

Calculates wetbulb temperature

Adding diagnostics using FORTRAN code

It is possible to link your favorite FORTRAN diagnostics routines to NCL. It is easier to
use FORTRAN 77 code, but NCL also recognizes basic FORTRAN 90 code.

Let’s use a routine that calculates temperature (K) from theta and pressure.

FORTRAN 90 routine called myTK.f90

subroutine compute_tk (tk, pressure, theta, nx, ny, nz)

implicit none

1! Variables
integer :: nx, ny, nz

real, dimension (nx,ny,nz) :: tk, pressure, theta

1! Local Variables
integer :: 1, j, k

real, dimension (nx,ny,nz):: pi

pi(:,:,:) = (pressure(:,:,:) / 1000.)**(287./1004.)
tk(z,:,:) = pi(:,:,0) *theta(:,:,:)

return

end subroutine compute tk

For simple routines like this, it is easiest to re-write the routine into a FORTRAN 77

routine.

WRF-ARW V4: User’s Guide 9-16

POST-PROCESSING

FORTRAN 77 routine called myTK.f

subroutine compute_tk (tk, pressure, theta, nx, ny, nz)
implicit none

C Variables
integer nx, ny, nz
real tk(nx,ny,nz), pressure(nx,ny,nz), theta(nx,ny,nz)

C Local Variables
integer 1, j, k
real pi

DO k=1,nz
DO j=1,ny
DO i=1,nx
pi=(pressure(i,j,k) / 1000.)**(287./1004.)
tk(i,j,k) = pi*theta(i,j,k)
ENDDO
ENDDO
ENDDO

return
end

Add the markers NCLFORTSTART and NCLEND to the subroutine as indicated
below. Note, that local variables are outside these block markers.

FORTRAN 77 routine called myTK.f, with NCL markers added

C NCLFORTSTART
subroutine compute_tk (tk, pressure, theta, nx, ny, nz)
implicit none

C Variables
integer nx, ny, nz
real tk(nx,ny,nz), pressure(nx,ny,nz), theta(nx,ny,nz)

C NCLEND

C Local Variables
integer 1, j, k
real pi

DO k=1,nz
DO j=1,ny
DO i=1,nx
pi=(pressure(i,j,k) / 1000.)**(287./1004.)
tk(i,j,k) = pi*theta(i,j,k)
ENDDO
ENDDO
ENDDO

return
end

WRF-ARW V4: User’s Guide 9-17

POST-PROCESSING

Now compile this code using the NCL script WRAPIT.
WRAPIT myTK.f

NOTE: If WRAPIT cannot be found, make sure the environment variable
NCARG ROOT has been set correctly.

If the subroutine compiles successfully, a new library will be created, called myTK.so.
This library can be linked to an NCL script to calculate TK. See how this is done in the
example below:

load "$NCARG ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "SNCARG ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”
external myTK "./myTK.so"
begin
t=wrf user_getvar (a,”T”,5)
theta =t + 300

p = wrf user_ getvar (a,”pressure”,5)

dim = dimsizes(t)
tk = new((/ dim(0), dim(1), dim(2) /), float)

myTK :: compute_tk (tk, p, theta, dim(2), dim(1), dim(0))

end

Want to use the FORTRAN 90 program? It is possible to do so by providing an interface
block for your FORTRAN 90 program. Your FORTRAN 90 program may also not
contain any of the following features:

— pointers or structures as arguments,

— missing/optional arguments,

— keyword arguments, or

— if the procedure is recursive.

Interface block for FORTRAN 90 code, called myTK90.stub

C NCLFORTSTART
subroutine compute_tk (tk, pressure, theta, nx, ny, nz)

integer nx, ny, nz
real tk(nx,ny,nz), pressure(nx,ny,nz), theta(nx,ny,nz)

C NCLEND

Now compile this code using the NCL script WRAPIT.

WRAPIT myTK90.stub myTK.£90

WRF-ARW V4: User’s Guide 9-18

POST-PROCESSING

NOTE: You may need to copy the WRAPIT script to a locate location and edit it to point
to a FORTRAN 90 compiler.

If the subroutine compiles successfully, a new library will be created, called myTK90.s0
(note the change in name from the FORTRAN 77 library). This library can similarly be
linked to an NCL script to calculate TK. See how this is done in the example below:

load "$NCARG ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "SNCARG ROOT/lib/ncarg/nclscripts/wrf/WRFUserARW.ncl”
external myTK90 "./myTK90.so"

begin
t=wrf user_getvar (a,”T”,5)
theta =t + 300
p =wrf user_ getvar (a,”pressure”,5)

dim = dimsizes(t)
tk = new((/ dim(0), dim(1), dim(2) /), float)

myTK90 :: compute_tk (tk, p, theta, dim(2), dim(1), dim(0))

end

WRF-ARW V4: User’s Guide 9-19

POST-PROCESSING

RIP

RIP (which stands for Read/Interpolate/Plot) is a Fortran program that invokes NCAR
Graphics routines for the purpose of visualizing output from gridded meteorological data
sets, primarily from mesoscale numerical models. It was originally designed for sigma-
coordinate-level output from the PSU/NCAR Mesoscale Model (MM4/MMS5), but was
generalized in April 2003 to handle data sets with any vertical coordinate, and in
particular, output from the Weather Research and Forecast (WRF) modeling system. It
can also be used to visualize model input or analyses on model grids. It has been under
continuous development since 1991, primarily by Mark Stoelinga at both NCAR and the
University of Washington.

The RIP users' guide (http://www2.mmm.ucar.edu/wrf/users/docs/ripug.htm) is essential
reading.

Code history

Version 4.0: reads WRF-ARW real output files

Version 4.1: reads idealized WRF-ARW datasets

Version 4.2: reads all the files produced by WPS

Version 4.3: reads files produced by WRF-NMM model
Version 4.4: add ability to output different graphical types
Version 4.5: add configure/compiler capabilities

Version 4.6: bug fix changes between 4.5 and 4.6

Version 4.7: adds capability to plot MPAS output.

Necessary software

RIP only requires low-level NCAR Graphics libraries. These libraries have been merged
with the NCL libraries since the release of NCL version 5 (http://www.ncl.ucar.edu/), so
if you don’t already have NCAR Graphics installed on your computer, install NCL
version 5.

Obtain the code from the GitHub repository (https://github.com/NCAR/RIP) or from the
WRF-ARW user’s web site:
https://www2.mmm.ucar.edu/wrf/users/download/get sources pproc_util.html

Unzip and untar the RIP tar file. The tar file contains the following directories and files:
e CHANGES, a text file that logs changes to the RIP tar file.
e Doc/, a directory that contains documentation of RIP, most notably the Users'

Guide (ripug).

WRF-ARW V4: User’s Guide 9-20

POST-PROCESSING

e README, a text file containing basic information on running RIP.

e arch/, directory containing the default compiler flags for different machines.

e clean, script to clean compiled code.

e compile, script to compile code.

e configure, script to create a configure file for your machine.

e color.tbl, a file that contains a table, defining the colors you want to have
available for RIP plots.

e eta _micro_lookup.dat, a file that contains "look-up" table data for the Ferrier
microphysics scheme.

e psadilookup.dat, a file that contains "look-up" table data for obtaining
temperature on a pseudoadiabat.

e sample infiles/, a directory that contains sample user input files for RIP and
related programs.

e src/, a directory that contains all of the source code files for RIP, RIPDP, and
several other utility programs.

e stationlist, a file containing observing station location information.

Environment Variables

An important environment variable for the RIP system 1is RIP_ROOT.
RIP_ROOT should be assigned the path name of the directory where all your RIP
program and utility files (color.thl, stationlist, lookup tables, etc.) reside.
Typically (for cshrc shell):

setenv RIP_ROOT /my-path/RIP

The RIP_ ROOT environment variable can also be overwritten with the variable rip root
in the RIP user input file (UIF).

A second environment variable you need to set is NCARG_ROOT.
Typically (for cshrc shell):

setenv NCARG ROOT /usr/local/ncarg ! for NCARG V4
setenv NCARG ROOT /usr/local/ncl ! for NCL V5
Compiling RIP and associated programs

Since the release of version 4.5, the same configure/compile scripts available in all other
WRF programs have been added to RIP. To compile the code, first configure for your
machine by typing:

./configure

WRF-ARW V4: User’s Guide 9-21

POST-PROCESSING

You will see a list of options for your computer (below is an example for a Linux
machine):
Will use NETCDF in dir: /usr/local/netcdf-pgi

Please
1.

2.
3.
4

PC Linux
PC Linux
PC Linux
PC Linux

select from among the following supported platforms.

1486 1586 1686 x86 64, PGI compiler

1486 1586 1686 x86 64, g95 compiler

1486 1586 1686 x86 64, gfortran compiler
1486 1586 1686 x86 64, Intel compiler

Enter selection [1-4]

Make sure the netCDF path is correct.
Pick compile options for your machine.

This will create a file called configure. rip. Edit compile options/paths, if necessary.

To compile the code, type:

./compile

After a successful compilation, the following new files should be created.

rip RIP post-processing program.
Before using this program, first convert the input data to the correct
format expected by this program, using the program ripdp
ripcomp This program reads-in two rip data files and compares their content.
ripdp mm35 RIP Data Preparation program for MMS5 data

ripdp_wrfarw
ripdp wrfnmm

RIP Data Preparation program for WRF data

ripinterp

This program reads-in model output (in rip-format files) from a
coarse domain and from a fine domain, and creates a new file which
has the data from the coarse domain file interpolated (bi-linearly) to
the fine domain. The header and data dimensions of the new file
will be that of the fine domain, and the case name used in the file
name will be the same as that of the fine domain file that was read-
in.

ripshow

This program reads-in a rip data file and prints out the contents of
the header record.

showtraj

Sometimes, you may want to examine the contents of a trajectory
position file. Since it is a binary file, the trajectory position file
cannot simply be printed out. showtraj, reads the trajectory position
file and prints out its contents in a readable form. When you run
showtraj, it prompts you for the name of the trajectory position file

to be printed out.

WRF-ARW V4: User’s Guide 9-22

POST-PROCESSING

tabdiag If fields are specified in the plot specification table for a trajectory
calculation run, then RIP produces a .diag file that contains values
of those fields along the trajectories. This file is an unformatted
Fortran file; so another program is required to view the diagnostics.
tabdiag serves this purpose.

upscale This program reads-in model output (in rip-format files) from a
coarse domain and from a fine domain, and replaces the coarse data
with fine data at overlapping points. Any refinement ratio is allowed,
and the fine domain borders do not have to coincide with coarse
domain grid points.

Preparing data with RIPDP

RIP does not ingest model output files directly. First, a preprocessing step must be
executed that converts the model output data files to RIP-format data files. The primary
difference between these two types of files is that model output data files typically
contain all times and all variables in a single file (or a few files), whereas RIP data has
each variable at each time in a separate file. The preprocessing step involves use of the
program RIPDP (which stands for RIP Data Preparation). RIPDP reads-in a model output
file (or files), and separates out each variable at each time.

Running RIPDP
The program has the following usage:

ripdp XXX [-n namelist file] model-data-set-name [basic|all]
data file 1 data file 2 data file 3

Above, the "XXX" refers to "mm5", "wrfarw", or "wrfnmm".
The argument model-data-set-name can be any string you choose, that uniquely defines
this model output data set.

The use of the namelist file is optional. The most important information in the namelist is
the times you want to process.

As this step will create a large number of extra files, creating a new directory to place
these files in will enable you to manage the files easier (mkdir RIPDE).

e.g. ripdp wrfarw RIPDP/arw all wrfout dOl1 *

WRF-ARW V4: User’s Guide 9-23

POST-PROCESSING

The RIP user input file

Once the RIP data has been created with RIPDP, the next step is to prepare the user input
file (UIF) for RIP (see Chapter 4 of the RIP users’ guide for details). This file is a text
file, which tells RIP what plots you want, and how they should be plotted. A sample UIF,
called rip_sample.in, is provided in the RIP tar file. This sample can serve as a template
for the many UIFs that you will eventually create.

A UIF is divided into two main sections. The first section specifies various general
parameters about the set-up of RIP, in a namelist format (userin - which controls the
general input specifications, and trajcalc - which controls the creation of trajectories).
The second section is the plot specification section, which is used to specify which plots

will be generated.

namelist: userin

Variable Value Description

idotitle 1 Controls first part of title.

title ‘auto’ Defines your own title, or allow RIP to generate
one.

titlecolor ‘def.foreground’ | Controls color of the title.

iinittime 1 Prints initial date and time (in UTC) on plot.

ifcsttime 1 Prints forecast lead-time (in hours) on plot.

ivalidtime 1 Prints valid date and time (in both UTC and local
time) on plot.

inearesth 0 This allows you to have the hour portion of the
initial and valid time be specified with two digits,
rounded to the nearest hour, rather than the
standard 4-digit HHMM specification.

timezone -7.0 Specifies the offset from Greenwich time.

iusdaylightrule | 1 Flag to determine if US daylight saving should be
applied.

ptimes 9.0E+09 Times to process.
This can be a string of times (e.g. 0,3,6,9,12,)
or a series in the form of A4,-B,C, which means
"times from hour 4, to hour B, every C hours"
(e.g. 0,-12,3,). Either ptimes or iptimes can be
used, but not both. You can plot all available
times, by omitting both ptimes and iptimes from
the namelist, or by setting the first value negative.

ptimeunits ‘h’ Time wunits. This can be ‘h’ (hours), ‘m’
(minutes), or ‘s’ (seconds). Only valid with
ptimes.

WRF-ARW V4: User’s Guide

9-24

POST-PROCESSING

iptimes

99999999

Times to process.

This is an integer array that specifies desired
times for RIP to plot, but in the form of 8-digit
"mdate" times (i.e. YYMMDDHH). Either ptimes
or iptimes can be used, but not both. You can plot
all available times by omitting both ptimes and
iptimes from the namelist, or by setting the first
value negative.

tacc

1.0

Time tolerance in seconds.

Any time in the model output that is within tacc
seconds of the time specified in ptimes/iptimes
will be processed.

flmin, flmax,
fbmin, ftmax

.05, .95,.10, .90

Left, right, bottom and top frame limit

ntextq

0

Text quality specifier (0O=high; I=medium;
2=low).

ntexted

0

Text font specifier [0=complex (Times);
1=duplex (Helvetica)].

feoffset

0.0

This is an optional parameter you can use to "tell"
RIP that you consider the start of the forecast to
be different from what is indicated by the forecast
time recorded in the model output. Examples:
feoffset=12 means you consider hour 12 in the
model output to be the beginning of the true
forecast.

idotser

Generates time-series output files (no plots); only
an ASCII file that can be used as input to a
plotting program.

idescriptive

Uses more descriptive plot titles.

icgmsplit

O | —

Splits metacode into several files.

maxfld

Reserves memory for RIP.

ittrajcalc

Generates trajectory output files (use namelist
trajcalc when this is set).

imakev5d

Generate output for Vis5D

ncarg type

Outputs type required. Options are ‘cgm’
(default), ‘ps’, ‘pdf’, ‘pdfL’, ‘x11°. Where ‘pdf’ is
portrait and ‘pdfL’ is landscape.

istopmiss

This switch determines the behavior for RIP when
a user-requested field is not available. The default
is to stop. Setting the switch to 0 tells RIP to
ignore the missing field and to continue plotting.

rip root

‘/dev/mull’

Overwrites the environment variable RIP ROOT.

WRF-ARW V4: User’s Guide

9-25

POST-PROCESSING

Plot Specification Table

The second part of the RIP UIF consists of the Plot Specification Table. The PST
provides all of the user control over particular aspects of individual frames and overlays.

The basic structure of the PST is as follows:

The first line of the PST is a line of consecutive equal signs. This line, as well as
the next two lines, is ignored by RIP. It is simply a banner that says this is the
start of the PST section.

After that, there are several groups of one or more lines, separated by a full line of
equal signs. Each group of lines is a frame specification group (FSG), and it
describes what will be plotted in a single frame of metacode. Each FSG must end
with a full line of equal signs, so that RIP can determine where individual frames
start and end.

Each line within a FGS is referred to as a plot specification line (PSL). An FSG
that consists of three PSL lines will result in a single metacode frame with three
over-laid plots.

Example of a frame specification groups (FSG's):

feld=tmec; ptyp=hc; vcor=p; levs=850; >
cint=2; cmth=fill; cosg=-32,light.violet,-24,
violet,-16,blue,-8,green,0,yellow, 8, red, >
16,orange, 24,brown,32,1light.gray

feld=ght; ptyp=hc; cint=30; linw=2

feld=uuu, vvv; ptyp=hv; vcmx=-1; colr=white; intv=5

feld=map; ptyp=hb

feld=tic; ptyp=hb

This FSG will generate 5 frames to create a single plot (as shown below):

Temperature in degrees C (feld=tmc). This will be plotted as a horizontal contour
plot (ptyp=hc), on pressure levels (vcor=p). The data will be interpolated to 850
hPa. The contour intervals are set to 2 (cint=2), and shaded plots (cmth=fill) will
be generated with a color range from light violet to light gray.

Geopotential heights (feld=ght) will also be plotted as a horizontal contour plot.
This time the contour intervals will be 30 (cint=30), and contour lines with a line
width of 2 (linw=2) will be used.

Wind vectors (feld=uuu,vvv), plotted as barbs (vemax=-1).

A map background will be displayed (feld=map), and

Tic marks will be placed on the plot (feld=tic).

WRF-ARW V4: User’s Guide 9-26

POST-PROCESSING

Dataset: real RIP: rip sample Init: 1200 UTC Mon 24 Jan 00
Fest: 0.00 Valid: 1200 UTC Mon 24 Jan 00 (0600 MST Mon 24 Jan 00}
Tampsarature at pressure = BG0 hPa
Geopotential helght at pressure = 450 hPa
Horizontal wind yectors at pregsure = B6(hPa

S]]]
-18 -14 -12 -10 -8 -4 -4 -% 0 2 4 4 [0w 18 1& °¢
Xodel lnfo! V1.3 Eam—F-Eta XRF FEL NCEF slmpl 3¢ km, 27 levels, 180 ae

Running RIP

Each execution of RIP requires three basic things: a RIP executable, a model data set and
a user input file (UIF). The syntax for the executable, rip, is as follows:

rip [-f] model-data-set-name rip-execution-name

In the above, model-data-set-name is the same model-data-set-name that was used in
creating the RIP data set with the program ripdp.

rip-execution-name is the unique name for this RIP execution, and it also defines the
name of the UIF that RIP will look for.

The —f option causes the standard output (i.e., the textual print out) from RIP to be
written to a file called rip-execution-name.out. Without the —f option, the standard output
is sent to the screen.

e.g. rip -f RIPDP/arw rip sample
If this is successful, the following files will be created:

rip_sample.TYPE - metacode file with requested plots
rip_sample.out - log file (if —f used) ; view this file if a problem occurred

WRF-ARW V4: User’s Guide 9-27

POST-PROCESSING

The default output 7YPE is a ‘cgm’, metacode file. To view these, use the command ‘idt’.
e.g. 1idt rip sample.cgm

For high quality images, create pdf or ps images directly (ncarg_type = pdf/ ps).

See the Tools section in Chapter 10 of this User’s Guide for more information concerning

other types of graphical formats and conversions between graphical formats.

Examples of plots created for both idealized and real cases are available from:

https://www?2.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/RIP4/Examples/index.php

WRF-ARW V4: User’s Guide 9-28

POST-PROCESSING

ARWpost

The ARWpost package reads-in WRF-ARW model data and creates GrADS output files.
Since version 3.0 (released December 2010), vis5D output is no longer supported. More
advanced 3D visualization tools, like VAPOR and IDV, have been developed over the last
couple of years, and users are encouraged to explore those for their 3D visualization
needs.

The converter can read-in WPS geogrid and metgrid data, and WRF-ARW input and
output files in netCDF format. Since version 3.0 the ARWpost code is no longer
dependant on the WRF 10 API. The advantage of this is that the ARWpost code can now
be compiled and executed anywhere without the need to first install WRF. The
disadvantage is that GRIBI formatted WRF output files are no longer supported.

Necessary software

GrADS software - you can download and install GrADS from http://grads.iges.org/. The
GrADS software is not needed to compile and run ARWpost, but is needed to display the
output files.

Obtain the ARWpost TAR file from the WRF Download page
(https://www2.mmm.ucar.edu/wrf/users/download/get_sources pproc_util.html)

Unzip and untar the ARWpost tar file.
The tar file contains the following directories and files:

e README, a text file containing basic information on running ARWpost.
e arch/, directory containing configure and compilation control.

e clean, a script to clean compiled code.

e compile, a script to compile the code.

e configure, a script to configure the compilation for your system.

e namelist. ARWpost, namelist to control the running of the code.

e src/, directory containing all source code.

e scripts/, directory containing some grads sample scripts.

e util/, a directory containing some utilities.

WRF-ARW V4: User’s Guide 9-29

POST-PROCESSING

Environment Variables

Set the environment variable NETCDF to the location where your netCDF libraries are
installed. Typically (for cshrc shell):

setenv NETCDF /usr/local/netcdf

Configure and Compile ARWpost
To configure - Type:
./configure
You will see a list of options for your computer (below is an example for a Linux

machine):

Will use NETCDF in dir: /usr/local/netcdf-pgi

Please select from among the following supported platforms.
1. PC Linux 1486 1586 1686, PGI compiler

2. PC Linux 1486 1586 1686, Intel compiler

Enter selection [1-2]

Make sure the netCDF path is correct.
Pick the compile option for your machine

To compile - Type:

./compile

If successful, the executable ARWpost . exe will be created.

WRF-ARW V4: User’s Guide 9-30

POST-PROCESSING

Edit the namelist. ARWpost file

Set input and output file names and fields to process (&io)

Variable | Value | Description

&datetime

start_date; Start and end dates to process.

end date Format: YYYY-MM-DD HH:00:00

interval seconds 0 Interval in seconds between data to process. If data is
available every hour, and this is set to every 3 hours,
the code will skip past data not required.

tacc 0 Time tolerance in seconds.
Any time in the model output that is within facc
seconds of the time specified will be processed.

debug level 0 Set this higher for more print-outs that can be useful
for debugging later.

&io

input_root_name J Path and root name of files to use as input. All files
starting with the root name will be processed. Wild
characters are allowed.

output root_name | ./ Output root name. When converting data to GrADS,
output root_name.ctl and output root name.dat will
be created.

output title Title as in | Use to overwrite title used in GrADS .ctl file.

WREF file

mercator _defs .False. Set to true if mercator plots are distorted.

split_output .False. Use if you want to split our GrADS output files into a
number of smaller files (@ common .ctl file will be
used for all .dat files).

frames_per outfile | 1 If split output is .True., how many time periods are
required per output (.dat) file.

WRF-ARW V4: User’s Guide

9-31

POST-PROCESSING

plot ‘all’

Which fields to process.

‘all’ — all fields in WREF file

‘list’ — only fields as listed in the fields’ variable.

‘all list’ — all fields in WREF file and all fields listed in
the fields’ variable.

Order has no effect, i.e., ‘all list’ and ‘list all’ are
similar.

If ‘list’ is used, a list of variables must be supplied
under ‘fields’. Use ‘list’ to calculate diagnostics.

fields

Fields to plot. Only used if ‘/ist” was used in the ‘plot’
variable.

&interp

interp _method 0

0 - sigma levels,
-1 - code-defined "nice" height levels,
1 - user-defined height or pressure levels

interp levels

Only used if interp_method=1

Supply levels to interpolate to, in hPa (pressure) or km
(height). Supply levels bottom to top.

extrapolate false.

Extrapolate the data below the ground if interpolating
to either pressure or height.

Available diagnostics:

cape - 3d cape

cin - 3d cin

mcape - maximum cape
mcin - maximum cin

clfr - low/middle and high cloud fraction

dbz - 3d reflectivity

max_dbz - maximum reflectivity
geopt - geopotential

height - model height in km

Iel - lifting condensation level

Ifc - level of free convection

pressure - full model pressure in hPa

rh - relative humidity

rh2 - 2m relative humidity
theta - potential temperature
tc - temperature in degrees C
tk - temperature in degrees K

WRF-ARW V4: User’s Guide

9-32

POST-PROCESSING

td - dew point temperature in degrees C

td2 - 2m dew point temperature in degrees C

slp - sea level pressure

umet and vmet - winds rotated to earth coordinates
ulOm and v10m - 10m winds rotated to earth coordinates
wdir - wind direction

wspd - wind speed coordinates

wd10 - 10m wind direction

ws10 - 10m wind speed

Run ARWpost

Type:
./ARWpost.exe

This will create the output root name.dat and output root name.ctl files required as
input by the GrADS visualization software.

NOW YOU ARE READY TO VIEW THE OUTPUT

For general information about working with GrADS, view the GrADS home
page: http://grads.iges.org/grads/

To help users get started, a number of GrADS scripts have been provided:

e The scripts are all available in the scripts/ directory.

e The scripts provided are only examples of the type of plots one can generate with
GrADS data.

e The user will need to modify these scripts to suit their data (e.g., if you do not
specify 0.25 km and 2 km as levels to interpolate to when you run the "bwave"
data through the converter, the "bwave.gs" script will not display any plots, since
it will specifically look for these levels).

e Scripts must be copied to the location of the input data.

GENERAL SCRIPTS

cbar.gs Plot color bar on shaded plots (from GrADS home page)

rghset.gs Some extra colors (Users can add/change colors from color number 20
to 99)

WRF-ARW V4: User’s Guide 9-33

POST-PROCESSING

skew.gs

plot_all.gs

Program to plot a skewT

TO RUN TYPE: run skew.gs (needs pressure level TC,TD,U,V as input)
User will be prompted if a hardcopy of the plot must be created (- 1 for
yes and 0 for no).

If 1 is entered, a GIF image will be created.

Need to enter lon/lat of point you are interested in

Need to enter time you are interested in

Can overlay 2 different times

Once you have opened a GrADS window, all one needs to do is run this
script.

It will automatically find all .ctl files in the current directory and list them
so one can pick which file to open.

Then the script will loop through all available fields and plot the ones a
user requests.

SCRIPTS FOR REAL DATA

real surf.gs
plevels.gs

rain.gs

Cross_z.gs

zlevels.gs

input.gs

Plot some surface data

Need input data on model levels

Plot some pressure level fields

Need model output on pressure levels

Plot total rainfall

Need a model output data set (any vertical coordinate), that contain fields
"RAINC" and "RAINNC"

Need z level data as input

Will plot a NS and EW cross section of RH and T (C)
Plots will run through middle of the domain

Plot some height level fields

Need input data on height levels

Will plot data on 2, 5, 10 and 16km levels

Need WRF INPUT data on height levels

SCRIPTS FOR IDEALIZED DATA

bwave.gs

grav2d.gs
hill2d.gs

qss.gs

SqX.gs
sqy.gs

Need height level data as input

Will look for 0.25 and 2 km data to plot

Need normal model level data

Need normal model level data

Need height level data as input.

Will look for heights 0.75, 1.5, 4 and 8 km to plot
Need normal model level data a input

Need normal model level data a input

WRF-ARW V4: User’s Guide 9-34

POST-PROCESSING

Examples of plots created for both idealized and real cases are available from:

https://www?2.mmm.ucar.edu/wrf/OnLineTutorial/Graphics/AR Wpost/Examples/index.p
hp

Trouble Shooting

The code executes correctly, but you get "NaN" or "Undefined Grid" for all fields
when displaying the data.

Look in the .ctl file.

a) If the second line is:
options byteswapped

Remove this line from your .ctl file and try to display the data again.
If this SOLVES the problem, you need to remove the -Dbytesw option from
configure.arwp

b) If the line below does NOT appear in your .ctl file:
options byteswapped

ADD this line as the second line in the .ctl file.

Try to display the data again.

If this SOLVES the problem, you need to ADD the -Dbytesw option for
configure.arwp

The line "options byteswapped" is often needed on some computers (DEC alpha as an

example). It is also often needed if you run the converter on one computer and use
another to display the data.

WRF-ARW V4: User’s Guide 9-35

POST-PROCESSING

NCEP Unified Post Processor (UPP)

UPP Introduction

The NCEP Unified Post Processor has replaced the WRF Post Processor (WPP). The
UPP software package is based on WPP but has enhanced capabilities to post-process
output from a variety of NWP models, including WRF-NMM, WRF-ARW, Non-
hydrostatic Multi-scale Model on the B grid (NMMB), Global Forecast System (GFS),
and Climate Forecast System (CFS). At this time, community user support is provided
for the WRF-based systems and NMMB.

In addition to the option to output fields on the model’s native vertical levels, UPP
interpolates output from the model’s native grids to National Weather Service (NWS)
standard levels (pressure, height, etc.) and standard output grids (AWIPS, Lambert
Conformal, polar-stereographic, etc.) in NWS and World Meteorological Organization
(WMO) GRIB format. With the release of UPPv3.0, preliminary capabilities to output in
GRIB Edition 2 (GRIB2) format for select models has been included and a simple
template is available for users to modify to fit their needs. Caution should be taken
when utilizing GRIB2; exhaustive testing has not been conducted and it is recommend to
use this feature in testing/exploratory mode at this time. Updates will be provided as
GRIB2 output capabilities become available and more comprehensive information will
be included in the Users’ Guide.

UPP incorporates the Joint Center for Satellite Data Assimilation (JCSDA) Community
Radiative Transfer Model (CRTM) to compute model derived brightness temperature
(Tg) for various instruments and channels. This additional feature enables the generation
of a number of simulated satellite products including GOES and AMSRE products for
WRF-NMM, Hurricane WRF (HWRF), WRF-ARW and GFS. For CRTM
documentation, refer to
https://www.star.nesdis.noaa.gov/star/documents/seminardocs/2018/20181220 Johnson.p
df.

UPP Software Requirements

The Community Unified Post Processor requires the same Fortran and C compilers used
to build the WRF model. In addition, the netCDF library, the JasPer library, the PNG
library, Zlib, and the WRF 1/O API libraries, which are included in the WRF model tar
file, are also required. UPP uses WRF I/O libraries for data processing of all models and
as a result UPP is dependent on a WRF build. The JasPer library, PNG library, and Zlib
are new requirements with the release of UPPv2.0 and higher, due to the addition GRIB2

WRF-ARW V4: User’s Guide 9-36

POST-PROCESSING

capabilities. NCEP provides these necessary codes for download:
http://www.nco.ncep.noaa.gov/pmb/codes/GRIB2/

The UPP has some sample visualization scripts included to create graphics using either
GrADS (http://grads.iges.org/grads/grads.html) or GEMPAK
(http://www.unidata.ucar.edu/software/gempak/index.html). These are not part of the
UPP installation and need to be installed separately if one would like to use either
plotting package.

UPP has been tested on LINUX platforms (with PGI, Intel and GFORTRAN compilers).

Obtaining the UPP Code

The UPP package can be downloaded from: https://dtcenter.org/community-code/unified-
post-processor-upp.

UPP Functionalities

The UPP,

e is compatible with WRF v3.3 and higher.

e can be used to post-process WRF-ARW, WRF-NMM, NMMB, GFS, and CFS
forecasts (community support provided for WRF-based and NMMB
forecasts).

e can ingest WRF history files (wrfout*) in two formats: netCDF and binary.

e can ingest NMMB history files (nmmb_hist*) in binary.

The UPP is divided into two parts:

Unipost
1. Interpolates the forecasts from the model’s native vertical coordinate to
NWS standard output levels (e.g., pressure, height) and computes mean sea
level pressure. If the requested parameter is on a model’s native level, then no
vertical interpolation is performed.
ii. Computes diagnostic output quantities (e.g., convective available potential
energy, helicity, relative humidity).
iii. Outputs the results in NWS and WMO standard GRIB1 format (for GRIB
documentation, see http://www.nco.ncep.noaa.gov/pmb/docs/).
iv. Destaggers the WRF-ARW forecasts from a C-grid to an A-grid.
v. Outputs two navigation files, copygb_nav.txt (for WRF-NMM output
only) and copygh hwrf.txt (for WRF-ARW and WRF-NMM). These files
can be used as input for copygb.
1. copygb nav.txt: This file contains the GRID GDS of a Lambert
Conformal Grid similar in domain and grid spacing to the one used to

WRF-ARW V4: User’s Guide 9-37

POST-PROCESSING

Copyg.

1.

run the WRF-NMM. The Lambert Conformal map projection works
well for mid-latitudes.

2. copygb_hwrf.txt. This file contains the GRID GDS of a Latitude-
Longitude Grid similar in domain and grid spacing to the one used to
run the WRF model. The latitude-longitude grid works well for tropics.

Destaggers the WRF-NMM forecasts from the staggered native E-grid to a
regular non-staggered grid. (Since unipost destaggers WRF-ARW output
from a C-grid to an A-grid, WRF-ARW data can be displayed directly
without going through copygb.)

Destaggers the NMMB forecasts from the staggered native B-grid to a
regular non-staggered grid.

Interpolates the forecasts horizontally from their native grid to a standard
AWIPS or user-defined grid (for information on AWIPS grids, see
http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html).

Outputs the results in NWS and WMO standard GRIB1 format (for GRIB
documentation, see http://www.nco.ncep.noaa.gov/pmb/docs/).

Full UPP documentation available at:

https://dtcenter.org/community-code/unified-post-processor-upp/documentation

VAPOR

VAPOR is the Visualization and Analysis Platform for Ocean, Atmosphere, and Solar
Researchers. VAPOR was developed at NCAR to provide interactive visualization and
analysis of numerically simulated fluid dynamics. The current (3.3) version of VAPOR
has many capabilities for 3D visualization of WRF-ARW simulation output, including
the ability to directly import wrfout files, and support for calculating derived variables
that are useful in visualizing WRF output.

Basic capabilities of VAPOR with WRF-ARW output

e Direct Volume rendering (DVR)
Any 3D variable in the WRF data can be viewed as a density. Users control
transparency and color to view temperature, water vapor, clouds, etc. in 3D.

o Flow

WRF-ARW V4: User’s Guide 9-38

POST-PROCESSING

- Display barbs associated with 2D or 3D field magnitudes. Barbs can also be
positioned at a specified height above the terrain and aligned to the WRF data
grid.

- Draw 2D and 3D streamlines and flow arrows, showing the wind motion and
direction, and how wind changes in time.

- Path tracing (unsteady flow) enables visualization of trajectories that particles
take over time. Users control when and where the particles are released.

- Flow images (image based flow visualization) can be used to provide an
animated view of wind motion in a planar section, positioned anywhere in the
scene.

- Field line advection can be used to animate the motion of streamlines of any
vector field in a moving wind field.

e Isosurfaces
The isosurfaces of variables are displayed interactively. Users can control iso-
values, color and transparency of the isosurfaces. Isosurfaces can be colored
according to the values of another variable.

e Contour planes and Probes
3D variables can be intersected with arbitrarily oriented planes. Contour planes
can be interactively positioned. Users can interactively pinpoint the values of a
variable and establish seed points for flow integration. Wind and other vector
fields can be animated in the probe plane.

e Two-dimensional variable visualization
2D (horizontal) WRF wvariables can be color-mapped and visualized in the 3D
scene. They can be viewed on a horizontal plane in the scene, or mapped onto the
terrain surface.

e Animation
Control the time-stepping of the data, for interactive replaying and for recording
animated sequences.

e Image display

Tiff images can be displayed in the 3D scene. If the images are georeferenced (i.e.
geotiffs) then they can be automatically positioned at the correct
latitude/longitude coordinates. Images can be mapped to the terrain surface, or
aligned to an axis-aligned plane. Several useful georeferenced images are
preinstalled with VAPOR, including political boundary maps, and the NASA
Blue Marble earth image. VAPOR also provides several utilities for obtaining
geo-referenced images from the Web. Images with transparency can be overlaid
on the terrain images, enabling combining multiple layers of information.

e Analysis capabilities

VAPOR has an embedded Python calculation engine. Derived variables can be
easily calculated with Python expressions or programs and these will be evaluated

WRF-ARW V4: User’s Guide 9-39

POST-PROCESSING

as needed for use in visualization. VAPOR provides Python scripts to calculate
the following variables from WRF output:

CTT: Cloud-top temperature

DBZ: 3D radar reflectivity

DBZ MAX: radar reflectivity over vertical column

ETH: equivalent potential temperature

RH: relative humidity

PV: potential vorticity

SHEAR: horizontal wind hear

SLP: 2D sea-level pressure

TD: dewpoint temperature

TK: temperature in degrees Kelvin
Instructions for calculating and visualizing these and other variables are provided
on the VAPOR website.

Derived variables can also be calculated in IDL and imported into the current
visualization session. Variables can also be calculated in other languages (e.g.
NCL) and adjoined to the Vapor Data Collection. Documentation of these
capabilities can be found in the Documentation menu on the VAPOR website
http://www.vapor.ucar.edu.

VAPOR requirements

VAPOR is supported on Linux, Mac, and Windows systems. VAPOR works best with a
recent graphics card (say 1-2 years old). The advanced features of VAPOR perform best
with nVidia™, ATI™ or AMD™ graphics accelerators.

VAPOR is installed on NCAR visualization systems. Users with UCAR accounts can
connect their (Windows, Linux or Mac) desktops to the NCAR visualization systems
using NCAR’s VNC-based remote visualization services, to run VAPOR and visualize
the results remotely. Instructions for using NCAR visualization services are at:
https://www?2.cisl.ucar.edu/vislab

Contact vapor at ucar dot edu or visit their forum for assistance.

VAPOR support resources

The VAPOR website: http://www.vapor.ucar.edu includes software, documentation,
example data, and links to other resources.

The VAPOR GitHub website (https://github.com/NCAR/VAPOR) enables users to post
bugs, request features, download software, etc.

WRF-ARW V4: User’s Guide 9-40

POST-PROCESSING

Users are encouraged to provide feedback. Questions, problems, bugs etc. should be
reported to vapor at ucar dot edu. The VAPOR development priorities are set by users as
well as by the VAPOR steering committee, a group of turbulence researchers who are
interested in improving the ability to analyze and visualize time-varying simulation
results. Post a feature request to the VAPOR GitHub website
(https://github.com/NCAR/VAPOR), or e-mail vapor at ucar dot edu if you have requests
or suggestions about improving VAPOR capabilities.

Basic steps for using VAPOR to visualize WRF-ARW data

1. Install VAPOR

VAPOR installers for Windows, Macintosh and Linux are available on the VAPOR
home page, http://www.vapor.ucar.edu/.

For most users, a binary installation is fine. Installation instructions are also provided
in the VAPOR documentation pages.

Vapor’s QuickStart Guide is the fastest way to get up and running, but the same steps
are summarized in this document.

2. (Optional) Convert WRF output data to VAPOR Data Collection

In VAPOR 3.X, you can directly load WRF-ARW output files into VAPOR. From
the VAPOR menu select “File -> Import -> WRF-ARW?”. Alternately, if your data is
very large, you will be able to visualize it more interactively by converting it to a
Vapor Data Collection (VDC).

A VAPOR VDC consists of (1) a metadata file (file type .vdc) that describes an entire
VAPOR data collection, and (2) a directory of multi-resolution data files where the
actual data is stored. The metadata file is created by the command wrfvdccreate, and
the multi-resolution data files are written by the command wrf2vdc.

3. Visualize the WREF data

From the command line, issue the command “vapor”, or double-click the VAPOR
desktop icon (on Windows or Mac). This will launch the VAPOR user interface.

To directly import WRF-ARW (NetCDF) output files, click on the File menu, and
select “Import -~ WRF-ARW?”. Then select all the wrfout files you want to visualize
and click “open”. If instead you converted your data to a VAPOR Data Collection,
then, from the Data menu, choose “File -> Open VDC”, and select the metadata file
that you associated with your converted WRF data.

WRF-ARW V4: User’s Guide 9-41

POST-PROCESSING

e0Ce VAPOR User Interface

Modes: g | # Navigae g | o « o n oo e visiaizerNo. 0 B B OB 4 &4 QA @ | Agnvew | »

[] [] Visualizer_No._0

Navigation Settings

Name Type Data Set Enabled New
Image Image 5-08-29_10 Duplicate in: a

Variables Geometry Annotation

o]

X Barbs — 20

Y Barbs = 20

Z Barbs 1
Length Scale =) 0.76810
Thickness Scale = 1.00000

Use Constant Color

Constant Color

Colormap Transfer Function a

4. VAPOR Documentation

VAPOR documentation is provided on the Website http://www.vapor.ucar.edu.

To watch how VAPOR works interactively, see our YouTube Channel.

WRF-ARW V4: User’s Guide 9-42

