
AdvancedResearch Wrf dynamics and numerics
The WRFARW core is based on an Eulerian solver
for the fully compressible nonhydrostatic equations, cast in flux
(conservative) form, using a mass (hydrostatic pressure) vertical
coordinate. Prognostic variables for this solver are column mass
of dry air (mu), velocities u, v and w (vertical velocity), potential
temperature, and geopotential. Nonconserved variables (e.g. temperature,
pressure, density) are diagnosed from the conserved prognostic variables.
The solver uses a thirdorder RungeKutta timeintegration scheme
coupled with a splitexplicit 2ndorder time integration scheme
for the acoustic and gravitywave modes. 5thorder upwindbiased
advection operators are used in the fully conservative flux divergence
integration; 2nd6th order schemes are runtime selectable.
The following papers describe the equations and
numerical schemes used in the WRF ARW core.
Klemp, J. B., W. C. Skamarock, and J. Dudhia,
2007: Conservative splitexplicit time integration methods for the
compressible nonhydrostatic equations. Mon. Wea. Rev.,
accepted (pdf
file).
Skamarock, W. C., and J. B. Klemp, 2007: A timesplit
nonhydrostatic atmospheric model for research and NWP applications.
J. Comp. Phys., special issue on environmental modeling. Accepted
(pdf
file).
Skamarock, W. C., 2006: PositiveDefinite and
Montonic Limiters for UnrestrictedTimestep Transport Schemes. Mon.
Wea. Rev., 134, 22412250 (pdf
file).
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O.
Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description
of the Advanced Research WRF Version 2. NCAR Tech Notes468+STR
(pdf file).
Skamarock, W. C., 2004: Evaluating Mesoscale NWP
Models Using Kinetic Energy Spectra. Mon. Wea., Rev., 132,
30193032 (pdf
file).
Wicker, L. J., and W. C. Skamarock, 2002: Time
splitting methods for elastic models using forward time schemes
(pdf
file). Mon. Wea. Rev., 130, 20882097.
