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1. Introduction 
    In the past decade, the direct assimilation of 
satellite radiance data in numerical weather 
prediction (NWP) assimilation systems has 
proved to be an essential component for 
improving forecast skill, particularly for global 
models (e.g., Derber and Wu, 1998; McNally et 
al., 2000). In the past year, preliminary work has 
been performed to implement a direct radiance 
assimilation capability in the community 
WRF-Var assimilation system, which is expected 
to be able to improve the forecast for meso-scale 
and severe weather events. The next section will 
describe the implemented components relevant 
to radiance assimilation in the WRF-Var system, 
such as radiance data source, radiative transfer 
model (RTM), microwave surface emissivity 
model, quality control (QC), bias correction (BC) 
and observation error tuning. In the third section, 
one presents the preliminary results of a case 
study that assimilates NOAA AMSU-A radiance 
data to improve the hurricane Katrina forecast. 
Finally, one summarizes current developing 
status and future working plan. 

2. Implementation of Radiance 

Assimilation in WRF-Var 
a.  WRF-Var Systerm 

   Before involving in the description of 
components relevant to radiance assimilation, 
one briefly summarizes main features of the 
WRF-Var assimilation system. Current WRF-Var 
assimilation system was designed for providing 

an optimal initial and boundary conditions to the 
WRF model by using various observation 
information, both from conventional data and a 
number of satellite platforms. It is originally 
based upon a 3DVAR system designed for MM5 
system (Barker et al., 2004). A few 
improvements during the development of 
WRF-Var have been done relative to 
MM5-3DVAR. In addition to new radiance 
assimilation capability described in this paper, 
other important improvements include the 
change of the control variables, unified 
global/regional assimilation capability and 
preliminary 4DVAR capability. More details can 
be found in the WRF-Var overview of this 
volume by Barker et al.. 

 
b. Interface to Radiative Transfer 
Model 
Direct assimilation of radiance data requires 

incorporate a fast radiative transfer model (RTM) 
as an observation operator into the WRF-Var 
system. The interface to the latest version 8 of 
widely used RTM RTTOV (Saunders et al, 1999) 
has been implemented inside WRF-Var. This 
includes the interface to the forward, tangent 
linear and adjoint models of RTTOV. RTTOV8 
has ability to compute cloudy/precipitating 
radiance for infrared/microwave instruments. 
However, as a first step, current implementation 
only focuses on clear sky condition. It will be 
necessary to identify and reject radiance data 
contaminated by cloud and precipitation before 
assimilating these data. 

 



c. Microwave Surface Emissivity 
Model 

   Accurate surface emissivity is essential to 
the use of window channels (e.g., channels 
1~3 of AMSU-A). Infrared and microwave 
surface emissivity models are built in RTTOV. In 
addition to RTTOV inbuilt surface emissivity 
models, the NESDIS/NCEP microwave surface 
emissivity model (Weng et al., 2001) is also 
integrated into WRF-Var system as an optional 
scheme, which has more accurate emissivity 
computation over snow and sea-ice. This will be 
preferred for some particular application such as 
Antarctic prediction (Bromwich et al., 2005). 

 
d. Radiance Data Source and 

Interface 
There exists a number of radiance data 

sources both from geostationary (e.g., GOES, 
MSG, FY-2, MTSAT) and polar satellite 
platforms (e.g., NOAA, DMSP, Terra, Aqua), 
and from various instruments (e.g., AMSU-A/B, 
HIRS, AIRS, SSM/I). Currently, inside 
WRF-Var we have implemented data interface to 
some of NCEP BUFR radiance data such as 
those from NOAA series’ HIRS, AMSU-A, 
AMSU-B and EOS-Aqua’s AIRS. With the help 
of RTTOV (which can compute radiance for 
almost all available instruments) and a flexible 
programming design, technically adding new 
satellite instruments requires little additional 
coding effort. Different instruments can share 
the same code relevant to innovation 
computation and minimization procedure. Main 
additional efforts for adding new instruments are 
to implement separated data interface and 
quality control (QC) schemes. 
 

e. Quality Control 
Quality control (QC) is an important 

component for correctly using radiance data 
(also for other data). Currently, one firstly 
implements basic QC schemes for NOAA 
microwave instruments AMSU-A and AMSU-B, 

which were shown to have the largest impact for 
improvement of current global forecast skill.  

During QC procedure, AMSU-A/B data 
contaminated by precipitation is identified and 
rejected by means of a so-called scatter index (SI) 
defined by the difference of brightness 
temperature (BT) of corresponding instrument’s 
two channels (Ferraro et al., 2000):      

SI(amsua)=BT(23GHz)-BT(89GHz); 
SI(amsub)=BT(89GHz)-BT(150GHz).  

As suggested by Ferraro et al., (2000), all 
channels are rejected if SI>3K. Figure 1 shows 
the NOAA17 AMSU-B SI at 06Z on 26th August 
2005. We can clearly see that the precipitation 
areas (most in red color) are well identified by SI. 
Notice that Hurricane Katrina is well observed. 
An additional precipitation detection is to use the 
cloud liquid water path (CLWP) computed from 
the background field (generally a 6-hour WRF 
forecast). We assume that precipitation happens 
if CLWP>0.2mm. Computation indicates that 
CLWP has basically consistent precipitation area 
pattern with that of SI (not shown).  
 

 
Figure 1: NOAA17 AMSU-B scatter index 
within a 6-hour assimilation window centered at 
06Z on 26th August 2005. 

Other quality controls include: only using 
window channels over water; rejecting channels 
whose weighting function peak is above model 
top or below surface pressure; rejecting pixels 
over mixture surface; rejecting channels whose 
innovation (observation minus background) is 
larger than 3 times the standard deviation of 



observation error. It should be mentioned that 
final QC decision for an operational 
implementation should be done according to 
innovation monitoring for a long period. 
 

f. Bias Correction 
Global monitoring of radiance innovation in 

some NWP centers often shows biased feature. 
Figure 2a gives a scatter plot of observed versus 
computed brightness temperatures for NOAA15 
AMSU-A channel 6 within a 6-hour assimilation 
window centered at 00Z on 26th August 2005 
and within a domain shown in Figure 1. The 
observed brightness temperatures have an 
obvious negative bias of about 1.3K relative to 
those computed. In general, these biases depend 
upon both scan angle and air mass and need to 
be corrected either before data enters into 
minimization procedure (statistics-based method, 
Harris and Kelly, 2001) or during minimization 
procedure (variational-based method, Derber and 
Wu, 1998). For initial implementation, a bias 
correction scheme based upon simple linear 
regression is adopted, which is also used by 
some authors for atmospheric temperature and 
humidity profile retrieval from ATOVS radiance 
data (Li et al., 2000). Bias correction equation 
can be written as 
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where  is the brightness temperature 

computed from the background field, 

 the bias-corrected background 

brightness temperature. The bias correction 
coefficients a and b are obtained by a linear 
regression procedure (replacing LHS of equation 
(1) by observed brightness temperatures) for 
separated channels and scan angles. By-products 
of this statistics procedure are average, root 
mean square (RMS) and standard deviation of 
innovation, which can be used as reference of 
observation error assignment or a start point of 

observation error tuning procedure. Figure 2b 
gives the scatter plot after bias correction for the 
same dataset as Figure 2a. The bias is 
significantly reduced. 
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Figure 2a: Scatter plot of observed versus 
computed brightness temperatures for 
NOAA15 AMSU-A channel 6. 
 

 
Figure 2b: Same as Figure 2a, but after              
bias correction. 

. 
g. Observation Error Tuning 
Observation error assignment in assimilation 

system determines the analysis weight of 
corresponding observation type and is crucial for 
optimal use of observations. An error tuning 
procedure for radiance data is developed based 
upon the method by Desroziers and Ivanov 
(2001). This tuning procedure requires two 
series’ assimilation runs. One uses realistic 
observations and another uses perturbed 
observations.  
 
 



3. Application to the Hurricane 

Katrina 
As the first test, one applies radiance 

assimilation to the hurricane Katrina case. For 
conducting the experiments, a domain with a 
horizontal resolution of 12km (460*351 grid 
points) and 51 vertical levels (model top at 
10hPa for better using some high level channels) 
is set up. The area covered is shown in Figure 1. 
With this domain configuration, Figure 3 gives 
the best track (red line) of Katrina and 
WRF-ARW forecast tracks initialized from the 
NCEP AVN analysis respectively at 00Z on 25th  

(blue line), 26th (black line) and 27th (green line) 
August 2005. The forecast track from 00Z on 
27th is almost perfect. But the forecast tracks 
from 00Z on 25th and 26th are much worse. Some 
real-time forecasts started at 00Z on 26th from 
different NWP centers give similar bad track 
(not shown). One attempts to improve the 
Katrina forecast started at 00Z on 26th by 
radiance assimilation. One firstly focuses on the 
impact of AMSU-A data. 

 
Figure 3: The best track (red line) of Katrina and 
WRF-ARW forecast tracks initialized from the 
NCEP AVN analysis respectively at 00Z on 25th 

(blue line), 26th (black line) and 27th (green line) 
August 2005. 

Four assimilation experiments were 
conducted: (1) only use conventional data; (2) 
use conventional data plus AMSU-A data; (3) 
only use AMSU-A data; (4) use AMSU-A data 

plus a single central sea level pressure (SLP) 
observation located at hurricane center. 
AMSU-A data is within a 6-hour time window 
and conventional data is within a 4-hour time 
window* both centered at 00Z on 26th. All 
assimilation experiments uses the same 
background field which is a WRF 6-hour 
forecast initialized from the AVN analysis at 18Z 
on 25th. Mention that NOAA-15 AMSU-A has 
very good data coverage for this case and that 
assimilation experiments with AMSU-A data 
apply the bias correction scheme described in 
section 2f.  

 

Figure 4: the domain averaged mean(left) and 
RMS(right) of (NOAA15 AMSU-A) observation 
minus background (OMB, red line) and 
observation minus analysis (OMA, blue line) for 
the experiment only using AMSU-A data, where 
OMB is bias corrected values. 

Figure 4 gives the domain averaged mean 
and RMS of (NOAA15 AMSU-A) observation 
minus background (OMB, red line) and 
observation minus analysis (OMA, blue line) for 
the experiment only using AMSU-A data, where 
OMB is bias corrected values. The numbers of 
realistically assimilated observations after QC 
for different channels are also shown in Figure 4. 
The residual bias for most channels (e.g., 
channels 3~10) is small. Two window channels 1, 

                                                        
* In this study, using different time window for 
conventional data and AMSU-A data is just by 
historical reason, there is no particular 
consideration. But a shorter time window could 
be preferred for Hurricane application. 



2 and high level channel 12 still remain relative 
large residual bias. RMS is consistently reduced 
for all channels. Also mention that at the time of 
conducting these experiments, AMSU-A 
observation errors are not well tuned and are 
simply assigned by a constant factor 0.5 
multiplying the standard deviation of innovation 
statistics of different channels. 

 
Figure 5: forecast tracks for four assimilation 
experiments in addition to the best track and the 
forecast track from AVN analysis. 

After assimilations at 00Z on 26th, a 5-day 
forecast is followed. Figure 5 shows forecast 
tracks for these assimilation experiments in 
addition to the best track and the forecast track 
from AVN analysis. One can see that only using 
conventional data (green line) produces little 
improvement for track forecast. Using 
conventional data plus AMSU-A data (red dash 
line) further improves the track but still remains 
large track error. A little surprisingly, only using 
AMSU-A data (blue line) produces much better 
track forecast. The reason for this is not clear yet 
and needs to be analyzed with more details. Also 
note that using AMSU-A data plus a single 
central SLP observation located at hurricane 
center (yellow line) produces very similar track 
forecast to that with only AMSU-A data, but 
with a little better moving speed. This seems to 
indicate that this good track forecast is mainly 
controlled by assimilating AMSU-A data.  

Figure 6 shows the central sea level 
pressure (SLP) variation with time from the best 
track and three forecasts. One can see that three 

forecasts basically exhibit similar SLP variation 
to the best track. The worst SLP forecast (green 
curve) is the one initialized from AVN analysis 
at 00Z on 27th although its perfect track forecast 
as shown in Figure 3. This may be associated 
with low horizontal resolution (1*1degree) of 
the AVN analysis. As expected, adding a single 
SLP observation (black curve) further improves 
the SLP forecast relative to that with only 
AMSU-A data (blue curve) due to more accurate 
analysis of initial position and intensity of the 
hurricane. Note also that the lowest SLP from 
the best track (red curve) attains about 900hPa, 
whereas the lowest SLP from three forecasts is 
just about 920hPa. This probably indicates that a 
12km simulation is not enough to obtain more 
accurate Katrina intensity forecast. 

 
Figure 6: The central sea level pressure (SLP) 
variation with time from the best track and three 
forecasts. 

4. Summary and Perspective 
Preliminary radiance assimilation capability 

has been implemented in the WRF-Var system 
with some key components such as the interface 
to NCEP BUFR format radiance data and to 
radiative transfer model as well as to an external 
microwave surface emissivity model, quality 
control, bias correction and observation error 
tuning. Flexible programming design requires 
little additional coding efforts to add new 
instruments. An initial assimilation application 
of AMSU-A data to Katrina case gives 
encouraging results although the analysis with 



more details is still required. 
In the near future, some observing system 

simulation experiments (OSEs) will be 
performed for a long period (for example, whole 
month) to test the statistical impact of radiance 
data, in addition to more case studies. Improved 
schemes for bias correction (e.g., variational BC) 
and observation error tuning (e.g., remove the 
need for perturbed assimilation run) will be also 
developed. Quality control schemes for other 
available instruments (e.g., HIRS, GOES/MSG 
sounders, SSM/I etc.) should be studied. A 
thinning and/or super-obing strategy will be 
useful for better use of some instruments with 
high horizontal resolution (e.g., AMSU-B, 
MODIS). Adding an new interface to other 
RTMs such as CRTM developed by JCSDA will 
be preferred for wider community usage.  

From a longer term perspective, It will be 
more promising to assimilate radiance data by 
more advanced techniques developing currently, 
such as 4DVAR and ensemble Kalman filter 
(EnKF), with more consistent consideration of 
observation time distribution. Some high- 
spectral resolution infrared instruments such as 
AIRS and upcoming IASI as well as those to be 
aboard future NPOESS platforms, need to 
devote particular efforts for efficient use of these 
data. More challenging problem is to 
assimilating radiance data under cloudy and 
precipitating conditions, which should be crucial 
to improve quantitative cloud and precipitation 
forecast. 
 

Acknowledgment 
  The authors want to thank Jianjun Xu for 
kindly providing satellite data used in this study. 

 

References 
Barker, D. M., Huang, W., Guo, Y.-R., Bourgeois, 

A. L. and Xiao, Q. N. (2004): A 

three-dimensional variational data 
assimilation system for MM5: implementation 
and initial results. Mon. Wea. Rev., 132, 
897-914. 

Bromwich, D.H., A.J. Monaghan, K.W. Manning, 
and J.G. Powers (2005): Real-time forecasting 
for the Antarctic: An evaluation of the 
Antarctic Mesoscale Prediction System 
(AMPS). Mon. Wea. Rev., 133, 579-603. 

Derber, J. C. and Wu, W.-S (1998): The use of 
TOVS cloud-cleared radiances in the NCEP 
SSI analysis system. Mon. Wea. Rev., 126, 
2287-2299. 

Desroziers, D. and Ivanov, S. (2001): Diagnosis 
and adaptive tuning of information error 
parameters in a variational assimilation. Q. J. 
R. Meteorol. Soc., 127, 1433-1452. 

Ferraro, R. R. Weng, F., Grody, N. C. and Zhao, 
L. (2000): Precipitation characteristics over 
land from the NOAA-15 AMSU sensor. 
Geophys. Res. Let., 27, 2669-2672. 

Harris, B. A. and Kelly, G. (2001): A satellite 
radiance-bias correction scheme for radiance 
assimilation. Q. J. R. Meteorol. Soc., 127, 
1453-1468. 

Li, J. et al. (2000): Global sounding of the 
atmosphere from ATOVS measurements: the 
algorithm and validation. J. Appl. Meteor., 39, 
1248-1268. 

McNally, A. P., Derber, J. C. Wu, W. and Katz, B. 
B. (2000): The use of TOVS level-1b 
radiances in the NCEP SSI analysis system. Q. 
J. R. Meteorol. Soc., 126, 689-724. 

Saunders, R., Matricaedi, M. and Brunel, P. 
(1999): An improved radiative transfer model 
for assimilation of satellite radiance 
observations. Q. J. R. Meteorol. Soc., 125, 
1407-1425. 

Weng, F., Yan, B. and Grody, N. C. (2001): A 
microwave land emissivity model. J. Geophys. 
Res., 106, 20,115-20,123. 


	Radiance Assimilation in WRF-Var:
	Implementation and Initial Results
	Zhiquan Liu1, 2 (liuz@ucar.edu) and Dale Barker1

