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1. Introduction 
 

The 4-dimensional variational data assimilation 
(4D-Var) idea (Le Dimet and Talagrand, 1986; Lewis 
and Derber, 1985) has been pursued actively by 
research community and operational centers over the 
past two decades. The 5th generation Pennsylvania State 
University – National Center for Atmospheric Research 
mesoscale model (MM5) based 4D-Var (Zou et al. 
1995; Ruggiero et al. 2006), for example, has been 
widely used for more than 10 years. There are also 
successful operational implementations of 4D-Var (e.g. 
Rabier et al. 2000).  

The 4D-Var systems have a number of advantages 
over 3-dimensional schemes including the abilities to:  

1) Use observations at the almost exact times (to 
the width of the observation windows, see the 
discussion in the next section) that they are 
observed, which suits most asynoptic data, 

2) Implicitly use flow-dependent background 
errors, which ensures the analysis quality for 
fast developing weather systems, and 

3) Use a forecast model as a constraint, which 
ensures the dynamic balance of the final 
analysis. 

The last mentioned advantage also implies that the 
current Weather Research and Forecasting model (WRF) 
based 3-dimensional variational data assimilation 
system (WRF 3D-Var), which is developed from MM5 
3D-Var (Barker et al. 2004), should be enhanced with a 
4-dimensional capability, using the WRF forecast 
model as a constraint, in order to provide the best initial 
conditions for the WRF model. The 4D-Var capability 
within the unified WRF 3/4D-Var (WRF-Var) system 
has been under extensive development since 2004. It 
uses the WRF model and WRF 3D-Var as its basic 
components (Huang et al. 2005). The WRF 4D-Var 
prototype was built in 2005 and has under continuous 
refinement since then.  
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Over the past year, major software engineering 

work has been carried out to parallelize WRF 4D-Var 
and to merge the 4D-Var code with the most updated 
WRF model and the WRF 3D-Var code. Many single 
observation experiments have been carried out to 
validate the correctness of the 4D-Var formulation. A 
series of real data experiments have been conducted to 
assess the meteorological performance of the 4D-Var 
system. This paper summarizes the preliminary results 
of these experiments. 
 

2. 4D-Var For WRF   
 

The WRF implementation of 4D-Var follows 
closely the incremental 4D-Var formulation of Courtier 
et al. (1994), Veersé and Thépaut (1998), and Lorenc 
(2003). The data flow and program structure of WRF 
4D-Var is given in Fig. 1.  

The input to WRF 4D-Var is as the following. The 
observations are grouped into K windows, yk (k=1,K). 
A short-range forecast is used as the background, xb. 
Assume that the background error covariance matrix, B, 
and the observation error covariance matrix, R, are 
known. To integrate the WRF model over a time 
interval lateral boundaries, WRFBDY, are required. 
The 3D-Var solution can be obtained by setting K=1 
and removing WRF model related components. 

The  4D-Var includes outer-loops and inner-loops. 
The outer-loops deal with nonlinear aspects of the 
assimilation problem while the inner-loops run a 
minimization algorithm for a quadratic problem. Using 
superscript n for the outer-loop index the analysis 
vector, xn, is the final output of 4D-Var. 

For the inner-loops, the minimization starts from a 
guess vector, xn-1 (the analysis vector from the previous 
outer-loop). For the first outer-loop, n=1, xb is normally 
taken as the guess vector, x0. It should be stressed that 
in the incremental formulation the background vector 
and the guess vector should not be mixed. They are the 
same only during the first outer-loop.  

Mathematically 4D-Var minimizes a cost function 
J, using its gradient J’ with respect to the control 
variable, vn: 
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where U = B1/2 (Barker et al. 2004);  superscripts -1 and 
T denote inverse and adjoint of a matrix or a linear 
operator;  Hk, Hk and HT

k are nonlinear, tangent linear 
and adjoint observation operators over observation 
window k, which transform atmospheric variables 
between the gridded analysis space and observation 
space; Mk, Mk and MT

k are nonlinear, tangent linear and 
adjoint models, which propagate in time the guess 
vector xn-1, analysis increments Uvn and analysis 
residual, {.} in Equation (1), respectively; SW-V, SV-W, 
SW-V

 T and SV-W
 T are the 4D-Var specific operators 

which transform variables (e.g. between T and θ) and 
grids (between A-grid and C-grid) between VAR and 
WRF+.  

WRF+, VAR and COM are the three major 
components of WRF implementation of 4D-Var from a 
program structure point of view (Fig. 1): 

 
 

I.  WRF+ 
 

WRF+ comprises 4 models (WRF_NL, WRF_TL, 
WRF_AD and WRF_SN) under the same framework 
and compiled together as a single executable. The WRF 
model is referred to here as WRF_NL. Significant time 
was spent on selecting a simplified subset of WRF_NL 
to form a simplified nonlinear model, WRF_SN, which 
contains the full dynamics of WRF_NL plus a minimal 
set of physics. WRF_SN has been shown to produce 
reasonable short-range forecasts compared to WRF_NL 
(Xiao et al. 2005). The Transformation of Algorithms 
in Fortran (Giering and Kaminski, 2003) is used to 
construct the tangent linear model, WRF_TL, and its 
adjoint, WRF_AD, from WRF_SN. Most of the 
generated code passed the standard gradient tests and 
TL/AD tests following Zou et al. (1997). Sensitivities 
studies using WRF_AD have been carried out and 
reported by Xiao et al. (2005). Results in Section 4 may 
also be used as a check for the accuracy of WRF_TL. 
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Fig. 1. The data flow and program structure of WRF 4D-Var.  
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II.  VAR 
 

VAR contains all the components of WRF 3D-
Var (Barker et al. 2004) plus the 4-dimensional 
related enhancements. Among the enhancements are 
the grouping of observations (break y into yk) and 
their related calculations (replace H, H and HT by Hk, 
Hk and Hk

T) according to the observation windows 
(k); the calls to WRF_NL, WRF_TL and WRF_AD; 
and the grid/variable transform operators.  

III. COM  
 
As WRF+ and VAR are separate components, 

communications between them are needed. COM 
manages this communication. The implementation of 
COM is hidden from the other two components, 
allowing the movement of data to be handled either 
through disk I/O or, for maximum efficiency, through 
memory.  

 

3. The prototype 
 

The 4D-Var prototype was built last year (Huang 
et al. 2005). The main features of the prototype are:  

1)  It runs as separate WRF+ and VAR 
executables (wrfplux.exe and var.exe), 

2)  It uses calls to “system” to invoke 
wrfplus.exe from var.exe,  

3) It uses disk I/O to handle the communication 
between WRF+ and VAR, and  

4) It can only run on a single CPU. (It runs as 
fast on a Mac G4 power book as it does on 
an IBM SP cluster, e.g. the NCAR bluesky.) 

With the 4D-Var prototype it is possible to 
conduct single-observation experiments and case 
studies.  

The first real data test of 4D-Var prototype has 
been made using a conventional data set. The 
background is a 6 h forecast valid at 0000 UTC 25 
Jan 2000. Three-hour assimilation window is used, 
with 4 observation files centered at 0000, 0001, 0002 
and 0003. A 3D-Var analysis, using the FGAT option 
(Huang et al. 2005), is also performed for 
comparison.  

Figure 2 shows the cost functions (J, Jo and Jb) as 
functions of minimization simulations (iterations). It 
is shown that the convergence rate of the 4D-Var 
minimization is similar to that of 3D-Var and for this 
particular case 4D-Var reaches a lower minimum.  

 

 
 

Fig. 2. The cost functions (J, Jo and Jb) as functions of 
minimization simulations (iterations). The full 
lines are for 4D-Var and the dashed lines are for 
3D-Var (here the FGAT option of 3D-Var was 
used). For each experiment, the top two curves 
are for J and Jo, respectively and the bottom 
curve is for Jb 

 

 
There are two major limitations with the 4D-Var 

prototype. First, the problem size cannot be too large. 
The largest grid we have tested so far has 91x73x17 
grid points, with 45 km horizontal spacing. Although 
this grid is quite small compared to most operational 
grids, the results from this grid are still useful for the 
future operational configuration we have planned, in 
which 4D-Var will be multi-incremental with the 
inner loop running on coarser resolution. Typically a 
factor of 3 between the outer-loop resolution and the 
inner-loop resolution is used, i.e., if we use the above 
grid as inner loop, the outer-loop (and therefore the 
forecast model) will be on a grid with 271x217x17 
grid points and 15 km horizontal spacing. 
Interpolation of nonlinear model trajectory (FG01, 
FG02, etc. in Fig. 1) from high resolution to low 
resolution, nest-up, and interpolation of the analysis 
increment δx from low resolution to high resolution, 
nest-down, are needed in the multi-incremental 
formulation.  

Second, it is very slow without parallelization. 
Using disk I/O may further slow down the 
computation significantly. With the 45 km grid, a 6-h 
assimilation window and a realistic observation data 
set (~20000 like those to be described in Section 5), a 
4D-Var analysis needs to run 5 days on a Mac G4, if 
100 iterations are required for finding the cost 
function minimum. 
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4. 4D-Var structure functions 
 
Analysis increments due to a single observation 

produced by a data assimilation system implicitly 
provide structure functions or effective background 
error covariance matrix B (Thepaut et al. 1996). In 
order to compare the implicit structure function of 
4D-Var and that of 3D-Var, many single observation 
experiments are carried out. An example of these 
experiments is shown in this section.  

The background, a 6-h forecast valid at 0000 
UTC 25 Jan 2000, is used for both 3D-Var and 4D-
Var analyses. A single temperature observation at 
0600 UTC is placed at (75 W, 30 N, 500 hPa). The 
case is constructed to demonstrate one of the 
potential problems related to 3D-Var when 
assimilating asynoptic observations. Although this 
case is constructed with a large time difference, the 
problem exists as long as the observation time differs 
from the analysis time. 

The 3D-Var increments [the first panel (00h) of 
Fig. 3] show a Gaussian-like structure centered at the 
observation location. This is a graphic presentation of 
the background error covariance matrix, B, or 3D-
Var structure function. The increments are added to 
the background at the analysis time to produce the 

3D-Var analysis. Two forecasts using WRF_SN are 
then made, one from the background and the other 
from the analysis. The differences between the two 
forecasts are shown in Fig. 3. In this particular case, 
as the observation time and analysis time are 6 hours 
apart, it is clearly shown that the 6-h forecast from 
the analysis does not fit the observation anymore.  

The 4D-Var increments have a temporal 
dimension. They are shown in Fig. 4. The increments 
at 06 h (the last panel of Fig. 4) give a graphic 
representation of the background error covariance 
matrix at 06h, MBMT, or 4D-Var structure function. 
In addition to providing a fit to the observation at the 
observation location, it has a clear flow-dependent 
nature. The increments at the analysis time (00 h, the 
first panel of Fig. 5) are small with a center upstream 
of the observation. The 4D-Var analysis is obtained 
by adding the increments at 00 h to the background. 
Again, two forecasts using WRF_SN are made, one 
from the background and the other from the analysis. 
The differences between the two forecasts are shown 
in Fig. 5. The 6-h forecast from the 4D-Var analysis 
provides a good fit to the observation. It is also clear 
from Figs. 4 and 5, the linear approximations made in 
4D-Var are reasonable for this case. 

 

 
 
Fig. 3. 500mb θ difference at 00,01,02,03,04,05,06h from two nonlinear runs, one from background and the other 

from FGAT. 
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Fig. 4. 4D-Var 500mb θ increments at 00,01,02,03,04,05,06h to a 500mb T ob at 06h. 
 
 
 

 
 
Fig. 5. 500mb θ difference at 00,01,02,03,04,05,06h from two nonlinear runs, one from background and the other 

from 4D-Var.
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5. Typhoon Haitang 
 
To assess the 4D-Var performance and to test it 

in a near operational configuration, a series of 
experiments have been carried out on Typhoon 
Haitang, which hit Taiwan on 0000 UTC 18 July 
2005 (Guo et al. 2006).  

Starting from 0000 UTC 16 July (denoted as 
1600) and repeating every 6 h to 0000 UTC 18 July 
(1800), 5 parallel experiments are run at each 
analysis time: 

FGS – forecast from the background [The 
background fields are 6-h WRF forecasts 
from National Center for Environment 
Prediction (NCEP) GFS analysis.] 

AVN- forecast from the NCEP GFS analysis 
3DVAR – forecast from 3D-Var 
FGAT – forecast from FGAT [an option of 3D-

Var, see Lee and Barker (2005) and Huang 
et al. (2005)] 

4DVAR – forecast from 4D-Var 
The same parameter set and physics options are used 
for all forecast runs. The grid has 91x73x17 grid 
points with a 45 km horizontal spacing and 4 min 
time step. 

The observations include conventional data, 
satellite data and bogus data from the Central 
Weather Bureau of Taiwan. The numbers of different 
observation types assimilated by 4D-Var at 0000 
UTC 16 July (between 0000 UTC and 0600 UTC) are 
given in Table 1. At other analysis times, there are 
also GPS refractivity (N) data and QuikScat wind 
(QS-u, QS-v) data (e.g. 212 N, 2594 QS-u and 2605 
QS-v at 0600 UTC 16 July).   
 
Table 1. The numbers of different observation types 
assimilated by WRF 4D-Var at 0000 UTC 16 July. 

 
Obs type u v T p q ΔZ 
TEMP 727 724 869  697  
SYNOP 119 218 237 226 236  
SATOB 3187 3182     
AIREP 923 930 939    
PILOT 156 160     
METAR 167 191 216  200  
SHIP 69 70 77 79 73  
SATEM      511 
BUOY 67 67  64   
BOGUS 1200 1200 788 788 80  
 

The 48-h forecast typhoon tracks, all started at 
0000 UTC 16 July 2005, are plotted in Fig. 6, 

together with the observed track. The background sea 
level pressure field is also shown in the figure. For 
this case, the forecast from FGS is worst judging 
from the track. The forecasts from AVN, 3DVAR 
and FGAT are of the same quality. The forecast from 
4DVAR produces the best track. 

.  

 
 
Fig. 6. 48-h forecast typhoon tracks from FGS, AVN, 

3DVAR, FGAT, 4DVAR, together with the 
observed track. Forecasts are all made from 
0000 UTC 16 July 2005. The background sea 
level pressure field from FGS is also shown in 
the figure.  

 
Similar track plots have been obtained for 

forecasts started at other analysis times. To make the 
comparison easier, the track errors in km averaged 
over the 48-h forecast range are listed in Table 2. The 
best forecast at each analysis time is highlighted. It is 
evident that the 4D-Var produces superior forecast 
for Haitang track over this period. 

 
Table 2. The track error in km averaged over 48 h for 

each forecast. 
 

Time FGS AVN 3DVAR FGAT 4DVAR 
1600 159 85 72 77 66 
1606 108 83 67 97 79 
1612 93 100 95 82 137 
1618 116 67 103 52 54 
1700 80 66 68 62 52 
1706 83 80 80 67 65 
1712 111 104 90 112 128 
1718 113 113 133 129 93 
1800 116 221 192 103 111 
Sum 109 102 100 87 87 
 

Up to now, only the typhoon track forecasts have 
been investigated. Other aspects of the analyses and 
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forecasts will also be studied and reported in the near 
future. Observing system experiments will be carried 
out to assess the impact of different observation types, 
in particular that of bogus (Guo et al., 2006). 

6. Summary and future plans 
 

In this paper, a brief overview of the 4D-Var 
capability within WRF-Var is given and the progress 
made in the past year is summarized. Preliminary 
results indicate that the 4D-Var works properly and 
can be used to assimilate many observations of 
different types. 

In the experiments discussed in this paper, only 
one outer-loop is used in analyses and the NCEP 
background error (BE) statistics (CV3) is used. As 
discussed in Guo et al. (2006), further improvements 
could be obtained by using more outer-loops, a better 
BE and well-tuned parameters. 

We are in the process of building the 4D-Var 
basic system, featuring parallelization and using 
memory for communication between WRF+ and 
VAR. The 4D-Var basic system is expected to be 
computationally efficient as the program structure of 
WRF model and WRF-Var will be maintained. 
Extensive data assimilation experiments will be 
carried out with the basic system. 

Gravity waves are generated due to imbalances 
during the minimization iterations. To control these 
waves a penalty term based on the Digital Filter 
Initialization, JcDFI (Wee and Kuo, 2004), will be 
implemented.  

Other planned developments include a penalty 
term for lateral boundary control, more physics in the 
tangent linear and adjoint models, and the multi-
incremental capability. 
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