
A Workflow Management System for Automating Weather
and Climate Simulations

Christopher W Harrop1,2, Ligia Bernardet1,4, Mark Govett1, Jeff S Smith1,3, Stephen
Weygandt1

1NOAA Earth System Research Laboratory, Global Systems Division
2Cooperative Institute for Research in Environmental Sciences

3Cooperative Institute for Research in the Atmosphere
4Systems Research Group

Introduction

One of the challenges of modeling and
simulating weather and climate phenomena
is the laborious process of running the
various codes that are required to carry out
a simulation. For example, to perform a
single end-to-end run of a weather
simulation, a scientist must often run
several data preprocessing and assimilation
programs, the model code, several
postprocessing programs, codes to produce
visualizations, and at least one forecast
verification program. These codes often
have complex interdependencies and if the
simulation is run in real time, such as in an
operational setting, the various programs
must run at specific times of the day and
must finish before the resulting forecasts
become irrelevant. Another complication
is that many of these codes must run on
High Performance Computing (HPC)
platforms that are not always reliable and
are notoriously difficult for scientists to
use. The onerous task of properly
managing the execution of all the various
simulation codes is exacerbated even
further by the fact that hundreds to
thousands of end-to-end runs of the
simulation are required to complete many
experiments. The net effect of all these
obstacles is that scientists often become
overwhelmed by the process of running
their simulations and have little time left to
pursue the scientific questions they set out
to investigate.

In collaboration with the Development
Testbed Center (DTC), the Global Systems
Division (GSD) of the NOAA Earth
System Research Laboratory (ESRL) has
developed a scientific Workflow
Management System (WFMS) to address
the above challenges. A scientific WFMS
is software that helps scientists construct
scientific workflows and automate their
execution. A scientific workflow is simply
a collection of tasks and a description of
their runtime requirements. In the
following we describe the requirements
and design of our system and provide some
real world examples to illustrate how it has
enabled scientists to focus more on science
and less on babysitting their simulations.

Design

The concept of workflow management has
existed for a long time in the business
world but has only recently emerged as an
important tool for computational science.
In the last few years, computational
scientists have developed a number of
scientific WFMSs (Yu and Buyya, 2005)
in response to the challenges of growing
complexity and scale of simulation
experiments in a wide variety of scientific
disciplines. Most of these efforts are
focused on enabling the creation and
execution of workflows that use the Grid
to access data and computational resources
at remote locations (Taylor et al. (eds.)
2007). Another common theme is the use
of web services to implement loosely

coupled workflow tasks that execute on
remote resources. And some WFMSs, such
as the one used in the Linked
Environments for Atmospheric Discovery
(LEAD) (Plale et al. 2005), are themselves
components of much larger problem
solving environments.

Although many existing general purpose
WFMSs have impressive capabilities, they
do not meet our needs. One major
impediment is that local computing
policies, mostly related to security, prevent
us from using Grid and web services
technologies. Local policies also dictate
that the WFMS must make use of our
existing batch queuing software for
scheduling and monitoring all workflow
tasks. As (Eide et al. 2006) have pointed
out, a WFMS will not be successful if it
violates local computing policies or
significantly perturbs the scientists’
experimental methods. For these reasons
we are developing a simple WFMS with
the following fundamental design goals.
First, we have limited the scope of our
system to the weather and climate
modeling domain so that our design can
take advantage of any common properties
of weather and climate simulations.
Second, new capabilities are developed
incrementally so that, as our system
evolves, changes to the way scientists
construct and run their experiments is
minimized. Third, we never add
capabilities that are not directly motivated
by a scientist’s real world experience.
Finally, as with all WFMSs, reliability and
fault tolerance are very important. Our
WFMS must be reliable enough to be used
in an operational setting. It must withstand
and recover from system failures and must
automatically rerun tasks that fail.

Many existing WFMSs have sophisticated
graphical user interfaces (GUIs) for
creating and running workflows. However,
in adhering to our design philosophies, our

system does not currently have a GUI
because our users have not yet experienced
or expressed a need for one. Instead, users
use an editor and a simple custom XML-
based workflow language to define their
workflows in the form of human readable
text. We chose to devise our own
workflow language because the existing
workflow language standards are far too
complex to be useful for our purposes and
are difficult for scientists to understand and
use. In contrast, the workflow language we
created is very simple and allows weather
and climate researchers to define
workflows in terms that are meaningful to
them.

The workflow document that scientists
create describes a set of tasks and their
runtime requirements and dependencies. It
also specifies a set of “cycles” that usually
correspond to simulation initialization
times. The entire workflow is run for each
cycle specified and, subject to the declared
dependencies and real time constraints (if
applicable), multiple cycles will be run
concurrently. Scientists can compactly
specify an arbitrarily large series of runs of
a workflow that will automatically be
executed as quickly as the underlying
resources and specified dependencies
allow.

Our WFMS is implemented in Ruby and
has a layered, object-oriented architecture
(see Figure 1). The Workflow layer at the
top parses the XML workflow document
and orchestrates the overall execution of
the specified workflow. It communicates
with the Task layer to create, run, and
monitor the status of workflow tasks. The
Task layer runs and tracks the progress of
the tasks for each cycle specified in the
workflow. It starts tasks when their
dependencies are satisfied and retries tasks
that fail. The actual work for each task is
done by batch system jobs that run under
the control of the local batch queuing

system. The Task layer sends requests to
the Batch Job layer to create those batch
jobs and query their status. Finally, the
Batch System layer at the bottom accepts
job submission and status requests from
the Batch Job layer. The Batch System
layer's function is to translate generic
requests from the Batch Job layer into the
actual commands used by the underlying
batch system, execute those commands,
and return their results. The advantage of
this architecture is that we can extend our
system to support other batch systems
simply by adding a new batch system class
to the Batch System layer. For example, it
could, in principle, be extended to support
a metascheduler for running workflows on
Grid-based resources. Our system
currently supports the Sun Grid Engine
(SGE), Load Sharing Facility (LSF), and
LoadLeveler batch systems.

User Experience

It would be difficult, if not utterly
impractical, to measure and evaluate the
utility of our WFMS using formal

methods. However, a substantial amount of
anecdotal evidence suggests it has become
an essential tool for the scientists who
routinely use it to configure and run real
world experiments. In the following we
briefly describe some of those experiments
and how the WFMS contributed to their
success.

The WFMS has been used extensively by
scientists at the Developmental Testbed
Center (DTC), an institution that tests and
evaluates new developments in the
Weather Research and Forecasting (WRF)
System with the intention of accelerating
the transfer of new numerical weather
prediction techniques from developers to
operational forecasting centers.

Since 2003, the WRF DTC has performed
two retrospective tests (the WRF Test Plan
and WRF Rapid Refresh Core Test) and
two realtime forecasting experiments
(DTC Winter Forecasting Experiment and
NMM5-CONUS, where NMM stands for
the Non-hydrostatic Mesoscale Model
dynamic core of WRF). Additionally, the
WRF DTC participated in the Terrain-
induced Rotor Experiment (T-REX),
which had a realtime and a retrospective
component. All experiments made use of
the WRF DTC end-to-end system, which is
comprised of input data collection and pre-
processing, WRF forecasting, post-
processing, dissemination of forecasts,
forecast verification, and archiving. In all
but one of the projects cited above,
concurrent simulations of multiple
configurations of the WRF model were
processed, with the goal of determining the
sensitivity of the forecasts to variations in
dynamical core, physics suite, or initial
conditions.

The processing of multiple WRF
configurations for multiple forecast
initialization times was greatly simplified
by using the WFMS to schedule all tasks.

Figure 1: Workflow Management System
Architecutre

The WFMS was able to successfully detect
the presence of data for initial conditions
and to trigger the pre-processing and all
following tasks in a timely manner. In case
of failure of any task, the WFMS would
automatically re-start the task. With the
WFMS, the runs required minimal or no
manual monitoring, which allowed greater
productivity by making processing
possible even at times when no staff was
present, such evenings and weekends.
Additionally, by not spending time
monitoring runs, the scientific staff could
focus on the analysis of the results.

The WFMS has also been an extremely
valuable tool to scientists within the
Analysis and Modeling Branch (AMB) of
the Earth System Research Laboratory
(ESRL). Within AMB, current research
efforts are focused on developing a new
hourly updated mesoscale analysis and
forecast system for possible operational
implementation at NCEP in 2009. Known
as the Rapid Refresh (RR), this system is
comprised of several software packages
that must be run in a highly coordinated
manner with multiple contingencies based
on data availability and other factors.

The WFMS has proven to be an ideal tool
for providing automated management of
the complex task sequencing needed to run
the RR prediction system. These tasks
include: input data collection and format
conversion (both background grids and
observation datasets), GSI analysis pre-
processing, GSI analysis execution, WRF
model pre-processing and execution,
model post-processing and graphics
generation. This particular application
requires a very complicated task sequence
decision tree based on various data or task
failures. Because the WFMS provides
features such as file, task, and time
dependency handling, it excels for this
application. In addition to providing
complete automated control of the analysis

and forecast system, The WFMS is
relatively easy to configure and use. After
just a brief learning period we were able to
provide the WFMS to a colleague at a
different institution and have him
successfully using it and adapting it the
same day.

In summary, The WFMS has provided an
easy to use, extremely robust, automated
system for managing the complex task of
running an hourly cycled analysis and
forecast system and in the process greatly
reduced scripting and run monitoring
difficulties.

A Component of WRF Portal

In addition to providing workflow
management capabilities directly to
scientists, the WFMS is also a core
component of WRF Portal. WRF Portal is
a Java application that simplifies model
testing and evaluation by providing
modelers with an intuitive graphical user
interface for composing, running, and
monitoring workflows. It also helps
scientists track large numbers of model
configurations, runs, and results.

Users interact with WRF Portal's GUI to
create, run, and monitor WRF modeling
experiments. When a user instructs WRF
Portal to run a workflow, it automatically
generates the XML description of the
workflow, sends it to the supercomputer,
and invokes the WFMS. WRF Portal
retrieves information about the status of
workflow tasks from the WFMS log and
reports that to the user. Tasks are
automatically rerun by the WFMS without
explicit handling by WRF Portal.

Future Work

Although the WFMS has played a key role
in the success of several recent
experiments, there are a number of areas

where improvement is needed. For
example, scientists often need to define a
large number of post processing tasks that
differ only in the forecast time and the
name of the file that they process. This
results in very long, repetitive, workflow
documents that are difficult to maintain.
Another problem is that production real-
time runs require the ability to specify
quality of service (QoS) constraints, such
as start and end deadlines, for each task of
a workflow. The current workflow
language does not provide that capability.
A third issue with the workflow language
is that it currently requires users to specify
task runtime properties using batch
system-specific syntax. This means
workflow documents are not portable
across batch systems. One other lesson we
have learned is that it is often necessary to
rerun arbitrary portions of a workflow that
have completed successfully in order to
correct non-fatal mistakes or make
adjustments to code or simulation
parameters. Although the WFMS can
easily rerun tasks that crash, there is
currently no convenient way to roll back a
workflow to rerun tasks that have
completed successfully.

The first issue can be addressed, in part, by
providing a software tool to help scientists
create and maintain workflow documents.
However, we believe new workflow
language elements that allow scientists to
compactly define groups of similar tasks
are also necessary. Simple augmentations
to the workflow language are also planned
to address the lack of QoS constraints and
the non-generic specification of task
runtime properties. Unfortunately, the
implementation of workflow roll back
presents many technical problems that we
have not yet determined how to solve.

Conclusions

We have developed a simple scientific
WFMS that has successfully automated the
orchestration of several recent complex,
large-scale, weather simulation
experiments. Many of its users now
consider it to be a crucial tool for
conducting their experiments and are even
encouraging their colleagues to give it a
try. No scientific software system will be
successful if scientists do not buy in to it.
We believe much of the success of our
WFMS is due to a design driven entirely
by user experience and by limiting its
scope to weather and climate modeling
applications.

References

Eide, E., L. Stoller, T. Stack, J. Freire, and
J. Lepreau, 2006: Integrated Scientific
Workflow Management for the Emulab
Network Testbed. Proc. 2006 USENIX
Annual Technical Conf., Boston, MA.
May-Jun. 2006

Plale, B., D. Gannon, Y. Huang, G.
Kandaswamy, S. Pallickara, and A.
Slominski, 2005: Cooperating Services
for Data-Driven Computaional
Experimentation. Computing in
Science and Engineering, vol 7, no 5,
Sept/Oct, 34-43

Taylor, I.J., Deelman, E., Gannon, D.B.,
and Shields, M. (Eds.), 2007:
Workflows for e-Science Scientific
Workflows for Grids. Springer-Verlag,
530 pp.

Yu, J. and R. Buyya, 2005: A taxonomy of
workflow management systems for
Grid computing. Technical Report
GRIDS-TR-2005-1, Grid Computing
and Distributed Systems Laboratory,
Univ. of Melbourne, 33 pp.

