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Introduction

One  of  the  challenges  of  modeling  and 
simulating weather and climate phenomena 
is  the  laborious  process  of  running  the 
various codes that are required to carry out 
a  simulation.  For  example,  to  perform a 
single  end-to-end  run  of  a  weather 
simulation,  a  scientist  must  often  run 
several data preprocessing and assimilation 
programs,  the  model  code,  several 
postprocessing programs, codes to produce 
visualizations,  and  at  least  one  forecast 
verification  program.  These  codes  often 
have complex interdependencies and if the 
simulation is run in real time, such as in an 
operational  setting,  the  various  programs 
must run at specific times of the day and 
must  finish  before  the  resulting  forecasts 
become irrelevant.   Another complication 
is  that  many of  these  codes must  run on 
High  Performance  Computing  (HPC) 
platforms that are not always reliable and 
are  notoriously  difficult  for  scientists  to 
use.  The  onerous  task  of  properly 
managing the execution of all the various 
simulation  codes  is  exacerbated  even 
further  by  the  fact  that  hundreds  to 
thousands  of  end-to-end  runs  of  the 
simulation are required to complete many 
experiments.  The  net  effect  of  all  these 
obstacles  is  that  scientists  often  become 
overwhelmed  by  the  process  of  running 
their simulations and have little time left to 
pursue the scientific questions they set out 
to investigate. 

In  collaboration  with  the  Development 
Testbed Center (DTC), the Global Systems 
Division  (GSD)  of  the  NOAA  Earth 
System Research  Laboratory  (ESRL)  has 
developed  a  scientific  Workflow 
Management  System (WFMS) to  address 
the above challenges. A scientific WFMS 
is   software that helps scientists construct 
scientific  workflows  and  automate  their 
execution.  A scientific workflow is simply 
a collection of tasks and a description of 
their  runtime  requirements.  In  the 
following  we  describe  the  requirements 
and design of our system and provide some 
real world examples to illustrate how it has 
enabled scientists to focus more on science 
and less on babysitting their simulations.

Design

The concept of workflow management has 
existed  for  a  long  time  in  the  business 
world but has only recently emerged as an 
important  tool  for  computational  science. 
In  the  last  few  years,  computational 
scientists  have  developed  a  number  of 
scientific  WFMSs (Yu and Buyya,  2005) 
in  response to  the  challenges  of  growing 
complexity  and  scale  of  simulation 
experiments in a wide variety of scientific 
disciplines.  Most  of  these  efforts  are 
focused  on  enabling  the  creation  and 
execution of workflows that  use the Grid 
to access data and computational resources 
at  remote  locations  (Taylor  et  al.  (eds.) 
2007). Another common theme is the use 
of  web  services  to  implement  loosely 



coupled  workflow  tasks  that  execute  on 
remote resources. And some WFMSs, such 
as  the  one  used  in  the  Linked 
Environments  for  Atmospheric  Discovery 
(LEAD) (Plale et al. 2005), are themselves 
components  of  much  larger  problem 
solving environments.

Although  many  existing  general  purpose 
WFMSs have impressive capabilities, they 
do  not  meet  our  needs.  One  major 
impediment  is  that  local  computing 
policies, mostly related to security, prevent 
us  from  using  Grid  and  web  services 
technologies.  Local  policies  also  dictate 
that  the  WFMS  must  make  use  of  our 
existing  batch  queuing  software  for 
scheduling  and  monitoring  all  workflow 
tasks. As (Eide et  al.  2006) have pointed 
out,  a WFMS will  not be successful  if  it 
violates  local  computing  policies  or 
significantly  perturbs  the  scientists’ 
experimental  methods.  For  these  reasons 
we are developing a  simple  WFMS with 
the  following  fundamental  design  goals. 
First,  we  have  limited  the  scope  of  our 
system  to  the  weather  and  climate 
modeling  domain  so  that  our  design  can 
take advantage of any common properties 
of  weather  and  climate  simulations. 
Second,  new  capabilities  are  developed 
incrementally  so  that,  as  our  system 
evolves,  changes  to  the  way  scientists 
construct  and  run  their  experiments  is 
minimized.  Third,  we  never  add 
capabilities that are not directly motivated 
by  a  scientist’s  real  world  experience. 
Finally, as with all WFMSs, reliability and 
fault  tolerance  are  very  important.  Our 
WFMS must be reliable enough to be used 
in an operational setting. It must withstand 
and recover from system failures and must 
automatically rerun tasks that fail.

Many existing WFMSs have sophisticated 
graphical  user  interfaces  (GUIs)  for 
creating and running workflows. However, 
in adhering to our design philosophies, our 

system  does  not  currently  have  a  GUI 
because our users have not yet experienced 
or expressed a need for one. Instead, users 
use an editor and a simple custom XML-
based  workflow  language  to  define  their 
workflows in the form of human readable 
text.  We  chose  to  devise  our  own 
workflow  language  because  the  existing 
workflow  language  standards  are  far  too 
complex to be useful for our purposes and 
are difficult for scientists to understand and 
use. In contrast, the workflow language we 
created is very simple and allows weather 
and  climate  researchers  to  define 
workflows in terms that are meaningful to 
them.  

The  workflow  document  that  scientists 
create  describes  a  set  of  tasks  and  their 
runtime requirements and dependencies. It 
also specifies a set of “cycles” that usually 
correspond  to  simulation  initialization 
times. The entire workflow is run for each 
cycle specified and, subject to the declared 
dependencies and real time constraints (if 
applicable),  multiple  cycles  will  be  run 
concurrently.  Scientists  can  compactly 
specify an arbitrarily large series of runs of 
a  workflow  that  will  automatically  be 
executed  as  quickly  as  the  underlying 
resources  and  specified  dependencies 
allow.

Our WFMS is implemented in Ruby and 
has a layered, object-oriented architecture 
(see Figure 1). The Workflow layer at the 
top  parses  the  XML workflow document 
and  orchestrates  the  overall  execution  of 
the  specified  workflow.  It  communicates 
with  the  Task  layer  to  create,  run,  and 
monitor the status of workflow tasks. The 
Task layer runs and tracks the progress of 
the  tasks  for  each  cycle  specified  in  the 
workflow.  It  starts  tasks  when  their 
dependencies are satisfied and retries tasks 
that fail. The actual work for each task is 
done by batch system jobs that run under 
the  control  of  the  local  batch  queuing 



system. The Task layer sends requests to 
the Batch Job layer  to create those batch 
jobs  and  query  their  status.  Finally,  the 
Batch System layer at the bottom accepts 
job  submission  and  status  requests  from 
the  Batch  Job  layer.  The  Batch  System 
layer's  function  is  to  translate  generic 
requests from the Batch Job layer into the 
actual  commands used  by the  underlying 
batch  system,  execute  those  commands, 
and return their results.  The advantage of 
this architecture is that we can extend our 
system  to  support  other  batch  systems 
simply by adding a new batch system class 
to the Batch System layer. For example, it 
could, in principle, be extended to support 
a metascheduler for running workflows on 
Grid-based  resources.  Our  system 
currently  supports  the  Sun  Grid  Engine 
(SGE),  Load Sharing Facility  (LSF),  and 
LoadLeveler batch systems.

User Experience

It  would  be  difficult,  if  not  utterly 
impractical,  to  measure  and  evaluate  the 
utility  of  our  WFMS  using  formal 

methods. However, a substantial amount of 
anecdotal evidence suggests it has become 
an  essential  tool  for  the  scientists  who 
routinely use it  to configure and run real 
world  experiments.  In  the  following  we 
briefly describe some of those experiments 
and  how the  WFMS contributed  to  their 
success.

The WFMS has been used extensively by 
scientists  at  the  Developmental  Testbed 
Center (DTC), an institution that tests and 
evaluates  new  developments  in  the 
Weather Research and Forecasting (WRF) 
System with the intention of  accelerating 
the  transfer  of  new  numerical  weather 
prediction  techniques  from developers  to 
operational forecasting centers.

Since 2003, the WRF DTC has performed 
two retrospective tests (the WRF Test Plan 
and  WRF Rapid  Refresh  Core  Test)  and 
two  realtime  forecasting  experiments 
(DTC Winter Forecasting Experiment and 
NMM5-CONUS,  where  NMM stands for 
the  Non-hydrostatic  Mesoscale  Model 
dynamic core of WRF).  Additionally,  the 
WRF  DTC  participated  in  the  Terrain-
induced  Rotor  Experiment  (T-REX), 
which  had a  realtime and a  retrospective 
component.  All  experiments  made use of 
the WRF DTC end-to-end system, which is 
comprised of input data collection and pre-
processing,  WRF  forecasting,  post-
processing,  dissemination  of  forecasts, 
forecast verification, and archiving. In all 
but  one  of  the  projects  cited  above, 
concurrent  simulations  of  multiple 
configurations  of  the  WRF  model  were 
processed, with the goal of determining the 
sensitivity of the forecasts to variations in 
dynamical  core,  physics  suite,  or  initial 
conditions.

The  processing  of  multiple  WRF 
configurations  for  multiple  forecast 
initialization  times  was greatly simplified 
by using the WFMS to schedule all tasks. 

Figure 1: Workflow Management System 
Architecutre



The WFMS was able to successfully detect 
the presence of data for initial  conditions 
and  to  trigger  the  pre-processing  and  all 
following tasks in a timely manner. In case 
of  failure  of  any task,  the  WFMS would 
automatically  re-start  the  task.  With  the 
WFMS,  the  runs  required minimal  or  no 
manual monitoring, which allowed greater 
productivity  by  making  processing 
possible even at times when no staff was 
present,  such  evenings  and  weekends. 
Additionally,  by  not  spending  time 
monitoring runs, the scientific  staff could 
focus on the analysis of the results.

The  WFMS  has  also  been  an  extremely 
valuable  tool  to  scientists  within  the 
Analysis and Modeling Branch (AMB) of 
the  Earth  System  Research  Laboratory 
(ESRL).   Within  AMB,  current  research 
efforts  are  focused  on  developing  a  new 
hourly  updated  mesoscale  analysis  and 
forecast  system  for  possible  operational 
implementation at NCEP in 2009.  Known 
as the Rapid Refresh (RR), this system is 
comprised  of  several  software  packages 
that  must  be run in  a  highly coordinated 
manner with multiple contingencies based 
on data availability and other factors.

The WFMS has proven to be an ideal tool 
for  providing  automated  management  of 
the complex task sequencing needed to run 
the  RR  prediction  system.  These  tasks 
include:  input  data  collection  and  format 
conversion  (both  background  grids  and 
observation  datasets),  GSI  analysis  pre-
processing,  GSI analysis  execution,  WRF 
model  pre-processing  and  execution, 
model  post-processing  and  graphics 
generation.  This  particular  application 
requires a very complicated task sequence 
decision tree based on various data or task 
failures.  Because  the  WFMS  provides 
features  such  as  file,  task,  and  time 
dependency  handling,  it  excels  for  this 
application.  In  addition  to  providing 
complete automated control of the analysis 

and  forecast  system,  The  WFMS  is 
relatively easy to configure and use.  After 
just a brief learning period we were able to 
provide  the  WFMS  to  a  colleague  at  a 
different  institution  and  have  him 
successfully  using  it  and  adapting  it  the 
same day.

In summary, The WFMS has provided an 
easy  to  use,  extremely  robust,  automated 
system for managing the complex task of 
running  an  hourly  cycled  analysis  and 
forecast system and in the process greatly 
reduced  scripting  and  run  monitoring 
difficulties.  

A Component of WRF Portal

In  addition  to  providing  workflow 
management  capabilities  directly  to 
scientists,  the  WFMS  is  also  a  core 
component of WRF Portal. WRF Portal is 
a  Java  application  that  simplifies  model 
testing  and  evaluation  by  providing 
modelers  with  an  intuitive  graphical  user 
interface  for  composing,  running,  and 
monitoring  workflows.  It  also  helps 
scientists  track  large  numbers  of  model 
configurations, runs, and results.

Users  interact  with WRF Portal's  GUI to 
create,  run,  and  monitor  WRF  modeling 
experiments.  When a user  instructs  WRF 
Portal to run a workflow, it automatically 
generates  the  XML  description  of  the 
workflow,  sends  it  to  the  supercomputer, 
and  invokes  the  WFMS.  WRF  Portal 
retrieves  information  about  the  status  of 
workflow tasks  from the  WFMS log and 
reports  that  to  the  user.  Tasks  are 
automatically rerun by the WFMS without 
explicit handling by WRF Portal. 

Future Work

Although the WFMS has played a key role 
in  the  success  of  several  recent 
experiments,  there  are a  number  of  areas 



where  improvement  is  needed.  For 
example, scientists often need to define a 
large number of post processing tasks that 
differ  only  in  the  forecast  time  and  the 
name  of  the  file  that  they  process.  This 
results  in  very  long,  repetitive,  workflow 
documents  that  are  difficult  to  maintain. 
Another  problem is  that  production  real-
time  runs  require  the  ability  to  specify 
quality of service (QoS) constraints,  such 
as start and end deadlines, for each task of 
a  workflow.  The  current  workflow 
language does not provide that capability. 
A third issue with the workflow language 
is that it currently requires users to specify 
task  runtime  properties  using  batch 
system-specific  syntax.  This  means 
workflow  documents  are  not  portable 
across batch systems. One other lesson we 
have learned is that it is often necessary to 
rerun arbitrary portions of a workflow that 
have  completed  successfully  in  order  to 
correct  non-fatal  mistakes  or  make 
adjustments  to  code  or  simulation 
parameters.  Although  the  WFMS  can 
easily  rerun  tasks  that  crash,  there  is 
currently no convenient way to roll back a 
workflow  to  rerun  tasks  that  have 
completed successfully. 

The first issue can be addressed, in part, by 
providing a software tool to help scientists 
create and maintain workflow documents. 
However,  we  believe  new  workflow 
language elements that allow scientists  to 
compactly  define  groups  of  similar  tasks 
are also necessary.  Simple augmentations 
to the workflow language are also planned 
to address the lack of QoS constraints and 
the  non-generic  specification  of  task 
runtime  properties.  Unfortunately,  the 
implementation  of  workflow  roll  back 
presents many technical problems that we 
have not yet determined how to solve.

Conclusions

We  have  developed  a  simple  scientific 
WFMS that has successfully automated the 
orchestration  of  several  recent  complex, 
large-scale,  weather  simulation 
experiments.  Many  of  its  users  now 
consider  it  to  be  a  crucial  tool  for 
conducting their experiments and are even 
encouraging  their  colleagues  to  give  it  a 
try. No scientific software system will be 
successful if scientists do not buy in to it. 
We  believe  much  of  the  success  of  our 
WFMS is due to a design driven entirely 
by  user  experience  and  by  limiting  its 
scope  to  weather  and  climate  modeling 
applications.
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