A Comparison of High-Resolution Mesoscale Simulations using MM5 and WRF-ARW for the 2006 Winter Olympics

Jeffrey R. Zielonka, Aijun Deng, David R. Stauffer, Glenn K. Hunter

The Pennsylvania State University

Objectives

Run MM5 and WRF-ARW for six case periods during the Winter Olympics using similar configurations
 Perform a statistical analysis on the finest domain (1.333-km resolution)
 Perform a subjective analysis of model results from both models

Case Descriptions

Case 1	00 UTC, 13 Feb 2006 - 00 UTC, 14 Feb 2006	Dry
Case 2	12 UTC, 17 Feb 2006 – 12 UTC, 18 Feb 2006	Precip/Wind in Mountains
Case 3	00 UTC, 18 Feb 2006 – 00 UTC, 19 Feb 2006	Precip in Mountains
Case 4	12 UTC, 19 Feb 2006 – 12 UTC, 20 Feb 2006	Precip in Mountains and on Plains
Case 5	00 UTC, 22 Feb 2006 – 00 UTC, 23 Feb 2006	Precip on Plains
Case 6	12 UTC, 25 Feb 2006 – 12 UTC, 26 Feb 2006	Light Precip in Mountains and on Plains

MM5 and WRF Experimental Design

Exp. Name	PBL Physics	Microphysics	CPS (36/12 km)	Radiation	Dynamic Initialization
Realtime MM5	GS TKE	Simple Ice	KF2	LW: RRTM SW: Dudhia	DI
MM5 BASELINE	M-Y Eta TKE PBL	Simple Ice	KF2	LW: RRTM SW: Dudhia	None
WRF BASELINE	M-Y-J Eta TKE PBL	WSM 3-class simple ice scheme	KF2	LW: RRTM SW: Dudhia	None
		Starting: -12h	Endi	ng: +24h	

Domain Configuration & Terrain

1.333-km domain terrain

Four one-way nested domains using ndown steps

Statistical Evaluation

Mean Absolute Error (MAE) calculated for wind speed, direction, temperature and mixing ratio on the 1.333-km domain Time series statistics • Individual case averages Average of all six cases Vertical profile statistics All vertical levels Six-case average

1.333-km Grid Surface-Layer MAE

Statistical Results

Six-case average stats show:

- WRF-ARW has a slight statistical advantage over MM5 at the surface on the 1.333-km domain (significance not tested)
- WRF-ARW also has a slight statistical advantage in the vertical, especially for mixing ratio.

Case by case, neither model has a distinct advantage for all variables

Subjective Comparisons

MM5 vs WRF-ARW

- WRF consistently has less spatial precipitation coverage
- WRF has unrealistic spikes in precipitation amounts along the lateral boundaries that do not exist in MM5 (occurs when using one-way nests with ndown steps)
- WRF-ARW v2.1 vs. WRF-ARW v2.2
 - More pronounced boundary noise in v2.2

Realtime MM5

OBS

ARPA Piemonte - The weather and show service at the Games

Venues	Sky Tei	np.(°C) ^{Umi} (%	dity Wind 6) (m/s)	Total Precipitations (mm)	Last 24h new snow (cm)	Web Cam
Pinerolo palaghiaccio	8.4 🥌	70	NNE 1.80	2	15	
<u>Cesana San Sicario</u>	🥰 1.1	64	SSW 2.30	<u>2</u> :	5	
Sauze d'Oulx- Jovenceaux	3.0	79	SSW 2.30	2	3	
Pragelato	2.6	60	WSW 1.70	2	1	2
Sestriere Borgata	式	51	S 2.90	π.	2	
Sestriere Colle	\delta 0.7	44	W 5.70	2	3	2
<u>Cesana Pariol</u>	\$ 2.7	61	SSW 2.30	.	5	2
Torino esposizioni	6.0	91	N 1.90	R.	5	
Bardonecchia	4 .4	41	WSW 2.90	-	9	2
Pragelato Plan	2.0	62	NNW 1.20	5	1	2
San Sicario Fraiteve		3 68	W 5.10	12	б	2
View of the Italian side	e from the I	French border				2

Data observed in the single venues: last update on 18/02/2006 at 15:00 local time

MM5

WRF2.1

MM5

WRF2.2

Realtime MM5

OBS

Weather data belong to Arpa Piemonte. Use allowed mentioning the source.

Data observed in the single venues: last update on 23/02/2006 at 02:00 local time

Venues	Sky	Temp.(°C)	Umidity (%)	Wind (m/s)	Total Precipitations (mm)	Last 24h new snow (cm)	Wet Can
Pinerolo palaghiaccio	ŝ	3.7	92	N 1.00	-	-	
<u>Cesana San</u> <u>Sicario</u>	-	-5.0	85	SW 1.60	-	-	
Sauze d'Oulx- Jovenceaux	÷	-1.9	100	SW 1.60	-	-	
Pragelato	-6	-3.4	87	SE 0.40	-	-	2
Sestriere Borgata		-5.5	79	SSE 0.70	-	-	
Sestriere Colle		-7.0	84	NE 1.40	-	1	2
Cesana Pariol	-	-5.8	99	SW 1.60	-	-	2
Torino esposizioni	é	5.1	84	S 0.30	-		
Bardonecchia	4	-4.2	79	SSW 0.70	-	-	2
Pragelato Plan	×6	-4.2	99	SE 0.70	-	-	2
San Sicario Fraiteve	ł	-6.7	85	ENE 2.90	-	1	2
View of the Italian	n side	from the Fre	ench bord	er			2
Pinerolo palaghiac	cio						

MM5

WRF2.1

MM5

WRF2.2

Why does this noise exist?

- Tests were performed with Case 6 to isolate the problem
 - Run all four domains with ndown
 - Run all four domains in the same job (with no feedback)

36-km Grid

without ndown

12-km Grid

without ndown

4-km Grid

without ndown

1.33-km Grid

without ndown

Conclusions

Statistics show that WRF-ARW has a slight advantage over MM5 averaged over all six cases • Note: Statistics are calculated well within the domain, away from the lateral boundary noise In general, WRF-ARW predicts less spatial coverage of precipitation than MM5 • Is this due to mass conservation within the domain? Subjective analysis shows noise in the precipitation field around the lateral boundaries • This is only a problem with one-way nests using ndown steps • This problem is known, and is being investigated by

NCAR

Questions

Supplemental Slides

MM5

WRF2.1

MM5

WRF2.2

MM5

WRF2.1

MM5

WRF2.2

Case 6 12UTC 25 Feb - 12UTC 26 Feb Light Precip in Mountains and on Plains Realtime MM5 OBS

Realtime MM5

No Precipitation

MM5

WRF2.1

MM5

WRF2.2

24-h Total Precip

MM5

Dataset: mm5 d4 RIP: mm5 realtime thick Init: 2100 UTC Sun 12 Feb 06 Fost: 24.00 h Valid: 0000 UTC Tue 14 Feb 06 (0100 LST Tue 14 Feb 06) Dataset: WRF 1.33km gridRIP: wrf realtime thiInit: 2100 UTC Sun 12 Feb 06Fost:24.00 hValid: 0000 UTC Tue 14 Feb 06 (0100 LST Tue 14 Feb 06) Horizontal wind speed Sea-level pressure 1000 to 0500 hFa thickness at k-index = 30Horizontal wind speed at k-index = 30Sea-level pressure 1000 to 0500 hPa thickness 1000 to 0500 hPa thickness 1000 to 0500 hPa thickness Horizontal mind vect Horizontal wind vecto m s⁻¹ m s⁻¹ 70 10 60 50 40 30 20 10 BARB VECTORS: FULL BARB $\stackrel{60}{=}$ 10 m s $\stackrel{70}{=}$ 90 100 8.0080 100 10 20 80 80 CONTOURS UNITS 540.00 540.00 540.00 540.00 INTERVAL= 6.0000 540.00 CONTOURS INTERVAL= 540.00 LOT= CONTOURS: UNITS=hPa LOW= 1014.0 HIGH= 1026.0 INTERVAL= 2.0000 Model Info: V2.1.1 M No Cu MYJ PBL WSM 3class Ther-Diff 1.3 km, 30 levels, 2.0000 INTERVAL= CONTOURS: UNITS=dam LOW= 540.00 CONTOURS: UNITS=hPa LOW= 1014.0 HIGH= 1024.0 INTERVAL= 2.0000 6 sec Model info: V3.6.3 No Cumulus Eta PBL Simple ice 1 km, 30 levels, 4 sec LW: RRTM SW: Dudhia DIFF: simple KM: 2D Smagor

Wind Speed and 1000-500hPa Thickness

WRF2.1

MM5

WRF2.2

MM5

5 realtime sfc Init: 2100 UTC Sun 12 Feb 06 Valid: 0000 UTC Tue 14 Feb 06 (0100 LST Tue 14 Feb 06) Dataset: WRF 1.33km gridRIP: wrf realtime sfcInit: 2100 UTC Sun 12 Feb 06Fcst:24.00 hValid: 0000 UTC Tue 14 Feb 06 (0100 LST Tue 14 Feb 06) Dataset: mm5 d4 RIP: mm5 realtime sfc Fest: 24.00 h Temperature Sea-level pressure Temperature Sea-level pressure at k-index = 30at k-index = 30Horizontal wind vectors Horizontal wind vectors at k-index = -30at k-index = -30100 📖 100 °C 90 2 80 80 -2 -2 70 70 -4 60 60 -4 -660 50 -6 -8 40 40 -1030 30 -8 -12 20 20 -10-14 10 10 40 50 60 70 BO 90 100 10 20 30 40 50 70 80 90 100 10 20 30 60 BARB VECTORS: FULL BARB = 10 m s⁻¹ CONTOURS: UNITS=bPa LOW= 1014.0 HIGH= 1024.0 INTERVAL= 2.0000 Model info: V3.6.3 No Cumulus Eta PEL Simple ice 1 km, 30 levels, 4 sec 6 sec 4 sec LW: RRTM SW: Dudhia DIFF: simple KM: 2D Smagor

Surface Layer Temperature

WRF2.1

MM5

Dataset: mm5 d4 RIP: mm5 realtime sfc Init: 2100 UTC Sun 12 Feb 06 Fost: 24.00 h Valid: 0000 UTC Tue 14 Feb 06 (0100 LST Tue 14 Feb 06) Init: 0000 UTC Mon 13 Feb 06 Dataset: d04 RIP: realtime sfc Fest: 24.00 h Valid: 0000 UTC Tue 14 Feb 06 (0100 LST Tue 14 Feb 06) Temperature Sea-level pressure Horizontal wind vectors at k-index = 30Temperature at k-index = 30Sea-level pressure at k-index = -30Horizontal wind vectors at k-index = -30100 📖 100 °C. 90 80 80 0 -2 70 70 -2Torino 60 -4 -4 60 60 -6 -6 40 -8 30 30 -8 -10 20 20 -10-12 10 10 40 50 60 70 80 90 100 20 40 50 80 90 100 10 20 30 70 30 BARB VECTORS: FULL BARB = 10 m s⁻¹ CONTOURS: UNITS=bPa LOW= 1014.0 HIGH= 1024.0 INTERVAL= 2.0000 Model info: V3.6.3 No Cumulus Eta PEL Simple ice 1 km, 30 levels, 4 sec

EARB VECTORS: FULL EARB = 10 m s^{-1} INTERVAL= 2.0000 CONTOURS: UNITS=hPa LOT = 1014.0 HIGH= 1026.0

Surface Layer Temperature

4 sec

WRF2.2

MM5

WRF2.1

MM5

WRF2.2

Case 3 00UTC 18 Feb - 00UTC 19 Feb Precip in Mountains Realtime MM5 OBS

Dataset: MM5 1.33km grid RIP: mm5 realtime rto Init: 2100 UTC Fri 17 Feb 06 Fost: 24.00 h Valid: 0000 UTC Sun 19 Feb 06 (0100 LST Sun 19 Feb 06) Total precip. since h 0 Sea-level pressure Horizontal wind vectors

at k-index = 30

Weather data belong to Arpa Piemonte. Use allowed mentioning the source.

Data observed in the single venues: last update on 19/02/2006 at 00:00 local time

Venues	Sky	Temp.(°C)	Umidity (%)	Wind (m/s)	Total Precipitations (mm)	Last 24h new snow (cm)	Web Cam
Pinerolo palaghiaccio	4	3.6	92	W 1.40	-	-	
<u>Cesana San</u> <u>Sicario</u>	43	-1.8	67	WSW 2.00	-	7	
Sauze d'Oulx- Jovenceaux	43	0.5	67	S 1.60	-	11	
Pragelato	4	-2.2	66	SW 0.80	-	5	2
Sestriere Borgata	-	-4.2	68	SW 1.70	-	6	
Sestriere Colle	4	-5.7	69	W 2.80	-	6	2
Cesana Pariol	ð	-2.1	79	WSW 2.00	-	5	2
Torino esposizioni	-	3.4	93	ENE 0.70	-	-	
Bardonecchia	Ó	-2.9	79	E 0.70	-	12	2
Pragelato Plan	4	-2.7	71	S 4.10	-	5	2
San Sicario Fraiteve	-	-6.5	89	SW 3.90	-	12	2
View of the Italian	side	from the Fro	ench bord	er			

MM5

24-h Total Precip

WRF2.1

MM5

WRF2.2

MM5

WRF2.1

MM5

WRF2.2

MM5

WRF2.1

MM5

WRF2.2

Case 4 12UTC 19 Feb - 12UTC 20 Feb Precip in Mountains and on Plains Realtime MM5 OBS

ппп

44 40

36

32

28

24 20 16

12

 Dataset: MM5 1.33km grid
 RIP: mm5 realtime rto
 Init: 0900 UTC Sun 19 Feb 06

 Fest:
 24.00 h
 Valid: 1200 UTC Mon 20 Feb 06 (1300 LST Mon 20 Feb 06)

 Total precip. since h 0
 Saa-level pressure

 Harizentla inclusion of the pressure
 Harizentla inclusion

Horizontal wind vectors at k-index = 3080 7060 50 30

THE REPORT OF TH

BO

90

4 sec

100

60

20

10

20

30

40

 $\begin{array}{c} {\rm BarB \ TECTORS}, \ {\rm Full \ BarB = 10\ m\ s^{-1}} \\ {\rm CONTOURS}; \ {\rm UNITS=hp-k\ LOW= 800.00} \\ {\rm Highe \ 1004.0} \\ {\rm Model \ intc:\ V3.8.3\ No\ Cumulus\ GSPBL \\ {\rm Simple \ ice \ 1\ km, \ 30\ levels, \ 4\ sec} \end{array}$

50

ARPA Piemonte - The weather and show service at the Games

Weather data belong to Arpa Piemonte. Use allowed mentioning the source.

Data observed in the single venues: last update on 20/02/2006 at 14:00 local time

Venues	Sky	Temp.(°C)	Umidity (%)	Wind (m/s)	Total Precipitations (mm)	Last 24h new snow (cm)	Web Cam
Pinerolo palaghiaccio	-	5.7	81	E 1.80	¥2	-	
<u>Cesana San Sicario</u>	*	0.5	60	N 1.00	Ri	25	
<u>Sauze d'Oulx-</u> Jovenceaux	*	4.7	62	N 1.00	÷	16	
Pragelato	*	3.0	71	N 1.10	<u>1</u>	15	2
Sestriere Borgata	*	1.3	52	SSW 1.40	¥.	18	
Sestriere Colle	*	-1.3	96	W 2.70	Ref.	20	2
Cesana Pariol	*	1.9	56	N 1.00	2	25	2
Torino esposizioni	-	3.5	88	SSW 1.70		-	
Bardonecchia	*	1.8	65	W 1.20	12	18	2
Pragelato Plan	*	3.9	48	SSE 1.30	2)	15	2
<u>San Sicario Fraiteve</u>	*	-0.2	59	WSW 3.90	5	25	2
View of the Italian eide	from	the French h	order				

MM5

WRF2.1

MM5

WRF2.2

4-km Grid Surface-Layer MAE

