

ATMOSPHERIC CO₂ TRANSPORT SIMULATION BY WRF-VPRM: A HIGH PRECISION TRACER FOR WRF VALIDATION

<u>*R. Ahmadov¹*</u>, *C. Gerbig¹*, *K. Dhanya¹*, *R. Kretschmer¹*, *S. Koerner¹*, *B. Neininger²*

¹*Max-Planck-Institute for Biogeochemistry, Germany* ²*MetAir, Switzerland*

WRF workshop, 2007

Motivation

Scientific questions:

- Where and by which processes is anthropogenic CO₂ sequestered?
- What are the main feedback processes between carbon cycle and climate system?
- What is the carbon budget of a specific region (continent/country)?

[Hansen and Sato, 2004]

Variable "Airborne fraction"

ATMOSPHERIC CO₂ MONITORING NETWORK

Courtesy of M. Heimann

Motivation and main goals Regional scale Carbon budget estimation requires:

- interpreting regional signals in PBL measurements
- dominant scales of variability:
 diurnal-synoptic (time)
 vegetation patterns (~ km)

- The global models used in inversions aren't able to capture mesoscale effects due to the coarse resolution
- Bridging the gap:
 - between tall tower and global model

Can we use a global model to interpret tall tower measurements? LMDZ, horizontal resolution: 1.25° (longitude), 0.83° (latitude)

Carbo Europe Regional Experiment Strategy (CERES) campaign, May-June, 2005

Forward CO₂ transport simulation particularities

- No chemistry in the air, once it's in the air it may stay there hundreds of years until uptake by the biosphere or dissolving in the ocean;
- Availability of high-precision measurements (~ 0.1 ppm, diurnal change ~20 ppm);
- Very heterogeneous sources and sinks: vegetation, soil, water basins, urban areas;
- Strong diurnal variation of the biospheric fluxes;
- Correlation of biospheric fluxes with solar radiation, air temperature, cloudiness, humidity, soil moisture;

Vegetation Photosynthesis and Respiration Model (VPRM) provides biospheric CO₂ fluxes each time step to WRF

fields from the global model

Anthropogenic emissions inventory, hourly, IER

VPRM Vegetation Photosynthesis and Respiration Model [Pathmathevan et al., submitted to GBC], based on Xiao et al. [2004]

Eddy Cov. data [many CE site PI's] MODIS surface reflectances 8 day, 500 m

Main questions:

- What does the model show as CO₂ mesoscale circulation?
- Does it capture main features of the observed regional distribution of CO₂ concentration?
- What can we learn from the model by distribution of CO_2 in different type of "artificial" tracers?

WRF domains for CERES study

10 km, 690x690 km

50 vertical levels, 20 in lowest 2 km

1.5

WRF modeling system setup

Vertical coordinates	Terrain-following hydrostatic pressure vertical coordinate
Basic equations	Non-hydrostatic, compressible
Grid type	Arakawa-C grid
Time integration	3 rd order Runge-Kutta split-explicit
Spatial integration	3 rd and 5 th order differencing for vertical and horizontal advection respectively; both for momentum and scalars
Domain configuration	2 domains with resolution – 10 and 2 km for outer and inner domains respectively; size 690x690 km and 320 x 280 km; 51 vertical levels for both domains up to 150 mb;
Time step	60 and 12 sec for outer and inner domains respectively
Physics schemes	Radiation - Rapid Radiative Transfer Model (RRTM) Longwave and Dudhia; Microphysics - WSM 3-class simple ice scheme; Cumulus - Kain-Fritsch (new Eta) scheme (only for the coarse domain!) PBL – YSU; Surface layer – Monin-Obukhov Land-surface – NOAH LSM

WRF-VPRM setup

- Five components of CO₂ in WRF-VPRM:
 - Global background CO₂
 - Anthropogenic CO₂
 - VPRM respiration CO₂
 - VPRM photosynthesis CO₂
 - Total CO₂
- ICs and LBSc from global model for total CO₂
- Zero ICs and zero-gradient outflow, zero-inflow LBCs for other components

6 hours for spin-up

CO₂ concentration and wind field near the surface, May-27, 2005

Dataset: wrfout d02 2005RIP: hor pl C02Fcst:6.00 hValid: 0000 UTC Fri 27 May 05 (0200 LST Fri 27 May 05)All C02 mixing ratioHorizontal wind vectorsat k-index = 50at k-index = 50

27th May 2005, afternoon flight

œ

cσ

050527b Aircraft

050527b

IOP4, flight 6th June 2005

A tower made CO₂ measurement interpretation by using global model – LMDZ, horizontal resolution: 1.25° (longitude), 0.83° (latitude)

Intercomparison between 5 coupled mesoscale models (Sarrat et al., 2007)

	03H		06H		09H		12H		15H		18H		Mean/24H	
T2M	RMS	Bias	RMS	Bias										
MNH-CNRM	4.3	-2.2	3.0	-1.7	2.7	-0.8	3.4	0.2	3.8	0.9	4.0	-0.4	3.4	-0.8
WRF-MPI	3.6	0.0	2.3	0.1	2.3	-0.7	3.0	-1.3	3.4	-1.6	4.4	-2.3	3.2	-0.8
RAMS-AMVU	4.5	-2.4	4.3	-3.1	2.5	-0.6	3.6	2.1	4.2	2.8	3.4	0.6	3.8	0.4
RAMS-ALTE	6.0	-4.7	6.4	-5.8	6.1	-5.3	4.7	-3.4	4.0	-2.3	4.0	-1.8	4.9	-3.4
RAMS-CEAM	3.7	-1.7	3.4	-2.6	2.5	-1.1	2.7	-0.2	3.1	-0.6	3.6	-1.6	3.1	-1.2

Table 2: RMS and bias on T2M at 3, 6, 9, 12, 15 and 18H UTC and a mean on 24H.

	03H		06H		09H		12H		15H		18H		Mean/24H	
HU2M	RMS	Bias	RMS	Bias	RMS	Bias	RMS	Bias	RMS	Bias	RMS	Bias	RMS	Bias
MNH-CNRM	25.7	-7.3	23.4	-9.9	15.4	2.1	15.5	1.7	10.8	-1.6	12.6	-0.1	18.9	-3.0
WRF-MPI	28.4	-15.5	22.2	-10.6	14.5	1.7	15.4	4.5	14.2	8.1	19.0	15.5	19.8	2.2
RAMS-AMVU	31.3	20.5	27.1	14.9	22.6	15.2	17.3	5.1	12.5	2.4	25.9	19.1	22.9	11.7
RAMS-ALTE	23.5	4.0	23.1	10.1	20.0	12.9	18.3	11.4	15.6	11.5	13.4	9.2	19.8	8.3
RAMS-CEAM	33.6	27.0	30.4	23.8	17.7	12.2	13.8	5.5	12.3	7.1	21.5	19.2	23.7	17.7

Table 3: RMS and bias on HU2M at 3, 6, 9, 12, 15 and 18H UTC and a mean on 24H.

SUMMARY:

- WRF model is able to capture mesoscale redistribution of CO₂
- VPRM captures main spatiotemporal variability in CO₂ fluxes
- CO₂ measurement sites can be "contaminated" by mesoscale flows

FUTURE:

- WRF-VPRM will be applied to tall tower sites
- WRF land-use data improvement, validation of different physics options
- WRF-CHEM passive tracer transport code will be used
- Estimation of regional C budgets through mesoscale inverse modelling by coupled WRF-VPRM-STILT (<u>S</u>tochastic <u>T</u>ime <u>I</u>nverted <u>L</u>agrangian <u>T</u>ransport Model) modeling system

THANK YOU FOR THE ATTENTION!

Many thanks to B.Skamarock for providing us with his code of WRF used for CO transport simulation!