Status of WRF 4D-Var

Xiang-Yu Huang1, Qingnong Xiao1, Xin Zhang2, John Michalakes1, Wei Huang1, Dale M. Barker1, John Bray1, Zaizhong Ma1, Tom Henderson1, Jimy Dudhia1, Xiaoyan Zhang1, Duk-Jin Won3, Yongsheng Chen1, Yongrun Guo1, Hui-Chuan Lin1, Ying-Hwa Kuo1

1National Center for Atmospheric Research, Boulder, Colorado, USA
2University of Hawaii, Hawaii, USA
3Korean Meteorological Administration, Seoul, South Korea

\textit{Acknowledgments}. The WRF 4D-Var development has been primarily supported by the Air Force Weather Agency. The Korean Meteorological Administration also funded some 4D-Var tasks.
Why 4D-Var?

• Use observations over a time interval, which suits most asynoptic data.
• Use a forecast model as a constraint, which enhances the dynamic balance of the analysis.
• Implicitly use flow-dependent background errors, which ensures the analysis quality for fast developing weather systems.
Outline

1. WRF 4D-Var milestones
2. The current status: The basic system
3. Weak constraint for noise control: JcDFI
4. A cycling experiment
5. The ongoing work
WRF 4D-Var milestones

2003: WRF 4D-Var project. ?? FTE
2004: WRF SN (simplified nonlinear model). 1.5 FTE
 Modifications to WRF 3D-Var.
2005: TL and AD of WRF dynamics. 1.5 FTE
 WRF TL and AD framework.
 WRF 4D-Var framework.
2006: The WRF 4D-Var prototype. 2.5 FTE
 Single ob and real data experiments.
 Parallelization of WRF TL and AD.
 Simple physics TL and AD.
 JcDFI
2007: The WRF 4D-Var basic system. 2.5 FTE
The WRF 4D-Var basic system

- WRF, VAR and WRF+ parallelized in WRF Software Framework
 - WRF TL/AD (dyn + vdiff + lsc) produced using TAF (www.fastopt.com)
 - Parallel versions from hand-parallelized TAF output
- MPMD execution on processors sets under IBM load-leveler/LSF
- Coupling (coordination and exchange) among WRF, VAR and WRF+ through files
Basic system: 3 exes, disk I/O, parallel, simple phys, JcDF
Wall clock of 6 hours integration

WRF 4DVAR 91x73x17 Blueice

(IBM power 5+)

![Bar chart showing performance of WRF 4DVAR on Blueice with different numbers of processors. The chart compares adjoint, tangent, and nonlinear operations in terms of wall clock time.](image)
JcDF in WRF 4D-Var
Weak constraint for noise control

Before: \(J = J_o + J_b \)

\[
J_b(x_0) = \frac{1}{2} \left[(x_0 - x_b)^T B^{-1} (x_0 - x_b) \right]
\]

\[
J_o(x_0) = \frac{1}{2} \sum_{k=1}^{K} \left[(H_k x_k - y_k)^T R^{-1} (H_k x_k - y_k) \right]
\]

After: \(J = J_o + J_b + J_c \)

\[
J_c(x_0) = \frac{\gamma_{df}}{2} \left[(\delta x_{N/2} - \delta x_{df})^T C^{-1} (\delta x_{N/2} - \delta x_{df}) \right]
\]

\[
= \frac{\gamma_{df}}{2} \left[\left(\delta x_{N/2} - \sum_{i=0}^{N} f_i \delta x_i \right)^T C^{-1} \left(\delta x_{N/2} - \sum_{i=0}^{N} f_i \delta x_i \right) \right]
\]

\[
= \frac{\gamma_{df}}{2} \left[\left(\sum_{i=0}^{N} h_i \delta x_i \right)^T C^{-1} \left(\sum_{i=0}^{N} h_i \delta x_i \right) \right]
\]

where:

\[
h_i = \begin{cases}
-f_i, & \text{if } i \neq N/2 \\
1 - f_i, & \text{if } i = N/2
\end{cases}
\]
Performance of JcDF

Figure 3 Cost functions without JcDF (gama=0.1)

Figure 4 Cost functions with JcDF (gama=0.1)
Domain-averaged absolute surface pressure tendency (hPa/3h)
A KMA Heavy Rain Case

Period: 12 UTC 4 May - 00 UTC 7 May, 2006

Assimilation window: 6 hours

Cycling
All KMA operational data

Grid: 60x54x31
Resolution: 30km
Domain size: the same as the KMA operational 10km domain.
Observations used in 3D-Var

<table>
<thead>
<tr>
<th></th>
<th>U wind</th>
<th>V wind</th>
<th>Temperature</th>
<th>Pressure</th>
<th>Water vapor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOUND</td>
<td>459</td>
<td>464</td>
<td>519</td>
<td>-</td>
<td>385</td>
</tr>
<tr>
<td>SONDE_SFC</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>SYNOP</td>
<td>67</td>
<td>59</td>
<td>73</td>
<td>71</td>
<td>72</td>
</tr>
<tr>
<td>GEOAMV</td>
<td>74</td>
<td>76</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PILOT</td>
<td>182</td>
<td>195</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>METAR</td>
<td>559</td>
<td>551</td>
<td>614</td>
<td>33</td>
<td>36</td>
</tr>
<tr>
<td>SHIP</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Observations used in 4D-Var

<table>
<thead>
<tr>
<th></th>
<th>U wind</th>
<th>V wind</th>
<th>Temperature</th>
<th>Pressure</th>
<th>Water vapor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOUND</td>
<td>456</td>
<td>461</td>
<td>519</td>
<td>-</td>
<td>384</td>
</tr>
<tr>
<td>SONDE_SFC</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>SYNOP</td>
<td>253</td>
<td>212</td>
<td>268</td>
<td>191</td>
<td>204</td>
</tr>
<tr>
<td>GEOAMV</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PILOT</td>
<td>185</td>
<td>194</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>METAR</td>
<td>2636</td>
<td>2402</td>
<td>2957</td>
<td>218</td>
<td>240</td>
</tr>
<tr>
<td>SHIP</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Observations Verification
Precipitation Verification

0.1 mm Precipitation

5mm Precipitation

15 mm Precipitation

25 mm Precipitation
Work plan for 2007

1. Multi-incremental formulation
2. Optimization
3. Convection
4. Meteorological tests
5. Lateral boundary control
6. Analysis on C-grid