## Update of Radiance DA in WRF-Var

Zhiquan Liu<sup>1</sup>, John Bray<sup>1</sup>, Huichuan Lin<sup>1</sup>, Dale Barker<sup>1</sup>, Jianjun Xu<sup>2</sup>, Tomislava Vukicivic<sup>3</sup>

<sup>1</sup>NCAR, <sup>2</sup>AFWA/JCSDA, <sup>3</sup>CU

June 13, 2007 8th WRF Users' Workshop



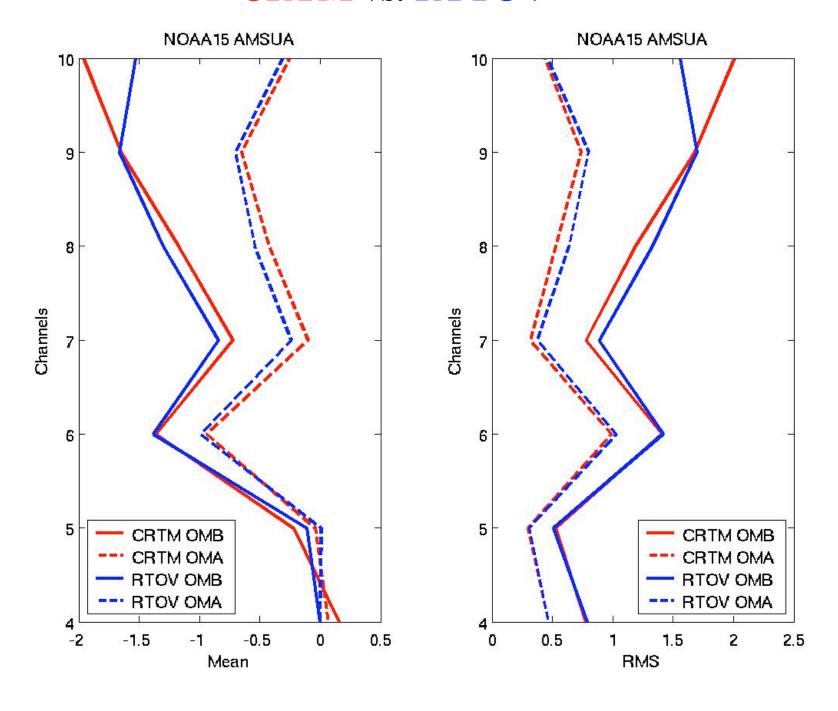
### General features of Radiance DA in WRF-Var

- Adopt RTMs used in operation centers
  - RTTOV and CRTM (only clear-sky condition)
- NCEP radiance BUFR data interface
- Air-mass dependent bias correction algorithm
- Quality Control for some instruments
  - AMSU, AIRS
- Observation error tuning tool
- FGAT mode
- Parallel with load balancing and thinning
- Flexible design to facilitate adding new instruments

## CRTM implementation

- CRTM: Community Radiative Transfer Model developed by JCSDA at NOAA
  - Contributions from research community
  - More structured design and user friendly interface
- Currently Beta Release
- Share the same user interface as RTTOV in WRF-Var




### Microwave Sensors

## CRTM Infrared sensors

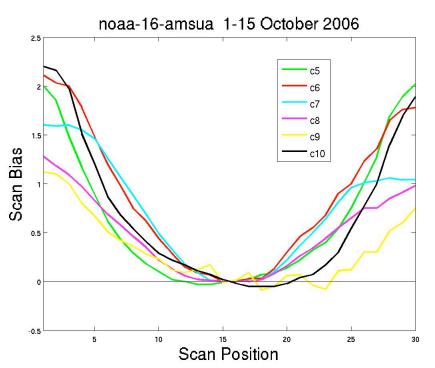
| _ |         |               |                  |           |          |
|---|---------|---------------|------------------|-----------|----------|
|   | Sensor  | Satellite     | Sensor           | # Sensors | S        |
|   | name    | name          | descriptor       | channels  |          |
| Ī | AMSR-E  | AQUA          | amsre_aqua       | 12        |          |
|   | AMSU-A  | AQUA          | amsua aqua       | 15        |          |
| Ī | AMSU-A  | NOAA-15       | amsua_n15        | 15        |          |
|   | AMSU-A  | NOAA-16       | amsua_n16        | 15        | _/       |
|   | AMSU-A  | NOAA-17       | amsua_n17        | 15        |          |
|   | AMSU-A  | NOAA-18       | amsua_n18        | 15        |          |
|   | AMSU-B  | NOAA-15       | amsub_n15        | 5         |          |
|   | AMSU-B  | NOAA-16       | amsub_n16        | 5         |          |
|   | AMSU-B  | NOAA-17       | amsub_n17        | 5         |          |
|   | ATMS    | NPOESS-<br>C1 | atms_c1          | 22        | _/       |
|   | HSB     | AQUA          | hsb_aqua         | 4         | <u> </u> |
|   | MHS     | NOAA-18       | mhs_n18          | 5         | <u> </u> |
|   | MSU     | TIROS-N       | msu_n05          | 4         |          |
|   | MSU     | NOAA-06       | msu_n06          | 4         |          |
|   | MSU     | NOAA-07       | msu_n07          | 4         |          |
|   | MSU     | NOAA-08       | msu_n08          | 4         |          |
|   | MSU     | NOAA-09       | msu_n09          | 4         |          |
|   | MSU     | NOAA-10       | msu_n10          | 4         |          |
|   | MSU     | NOAA-11       | msu_n11          | 4         |          |
|   | MSU     | NOAA-12       | msu_n12          | 4         |          |
|   | MSU     | NOAA-14       | msu_n14          | 4         |          |
|   | SSM/I   | DMSP-13       | ssmi_f13         | 7         |          |
|   | SSM/I   | DMSP-14       | ssmi_f14         | 7         |          |
|   | SSM/I   | DMSP-15       | ssmi_f15         | 7         |          |
|   | SSMIS   | DMSP-16       | ssmis_f16        | 24        |          |
|   | SSM/T-1 | DMSP-13       | ssmt1_f13        | 7         |          |
|   | SSM/T-1 | DMSP-15       | ssmt1_f15        | 7         | S        |
|   | SSM/T-2 | DMSP-14       | ssmt2_f14        | 5         | S        |
|   | SSM/T-2 | DMSP-15       | ssmt2_f15        | 5 Mesos   | S        |
|   | WindSat | Coriolis      | windsat_coriolis | 16        | S        |
|   |         |               |                  |           |          |

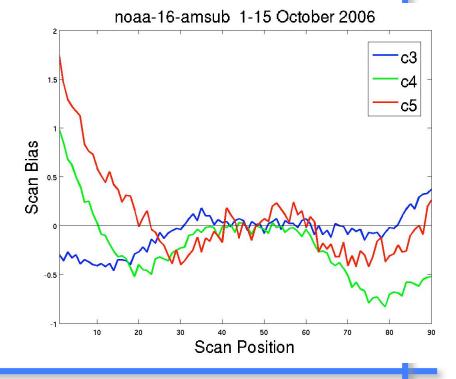
| Sensor  | Satellite | Sensor          | # of     |
|---------|-----------|-----------------|----------|
| name    | name      | descriptor      | channels |
| AIRS    | AQUA      | airs agua       | 2378     |
| AIRS    | AQUA      | airsSUBSET_aqua | 281      |
| AVHRR/2 | TIROS-N   | avhrr2_n05      | 2        |
| AVHRR/2 | NOAA-06   | avhrr2_n06      | 2        |
| AVHRR/2 | NOAA-07   | avhrr2_n07      | 3        |
| AVHRR/2 | NOAA-08   | avhrr2_n08      | 2        |
| AVHRR/2 | NOAA-09   | avhrr2_n09      | 3        |
| AVHRR/2 | NOAA-10   | avhrr2_n10      | 2        |
| AVHRR/2 | NOAA-11   | avhrr2_n11      | 3        |
| AVHRR/2 | NOAA-12   | avhrr2_n12      | 3        |
| AVHRR/2 | NOAA-14   | avhrr2_n14      | 3        |
| AVHRR/3 | NOAA-15   | avhrr3_n15      | 3        |
| AVHRR/3 | NOAA-16   | avhrr3_n16      | 3        |
| AVHRR/3 | NOAA-17   | avhrr3_n17      | 3        |
| AVHRR/3 | NOAA-18   | avhrr3_n18      | 3        |
| HIRS/2  | TIROS-N   | hirs2_n05       | 19       |
| HIRS/2  | NOAA-06   | hirs2 n06       | 19       |
| HIRS/2  | NOAA-07   | hirs2_n07       | 19       |
| HIRS/2  | NOAA-08   | hirs2 n08       | 19       |
| HIRS/2  | NOAA-09   | hirs2_n09       | 19       |
| HIRS/2  | NOAA-10   | hirs2 n10       | 19       |
| HIRS/2  | NOAA-11   | hirs2 n11       | 19       |
| HIRS/2  | NOAA-12   | hirs2_n12       | 19       |
| HIRS/2  | NOAA-14   | hirs2 n14       | 19       |
| HIRS/3  | NOAA-15   | hirs3_n15       | 19       |
| HIRS/3  | NOAA-16   | hirs3 n16       | 19       |
| HIRS/3  | NOAA-17   | hirs3_n17       | 19       |
| HIRS/3  | NOAA-18   | hirs3_n18       | 19       |
| IMAGER  | GOES-08   | imgr_g08        | 4        |
| IMAGER  | GOES-09   | imgr_g09        | 4        |
| IMAGER  | GOES-10   | imgr_g10        | 4        |
| IMAGER  | GOES-11   | imgr_g11        | 4        |
| IMAGER  | GOES-12   | imgr_g12        | 4        |
| MODIS   | AQUA      | modis_aqua      | 16       |
| MODIS   | TERRA     | modis_terra     | 16       |
| SOUNDER | GOES-08   | sndr_g08        | 18       |
| SOUNDER | GOES-09   | sndr_g09        | 18       |
| SOUNDER | GOES-10   | sndr_g10        | 18       |
| SOUNDER | GOES-11   | sndr_g11        | 18       |
| SOUNDER | GOES-12   | sndr_g12        | 18       |

### **CRTM vs. RTTOV**

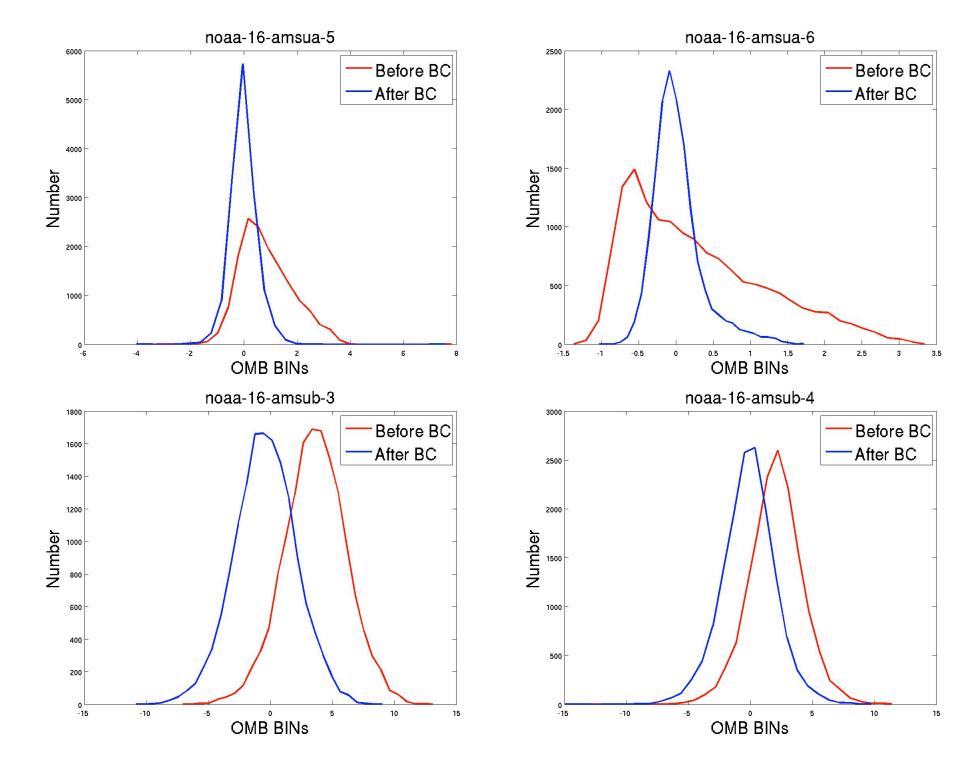


## Air-Mass dependent Bias Correction


- Harris and Kelly (2001) bias correlation scheme (originally used by ECMWF)
  - Separate total bias into scan bias and air-mass dependent bias
  - Air-mass bias is predicted by some 'predictors'
    - 1000-300mb thickness
    - 200-50mb thickness
    - surface skin temperature
    - Total column precipitable water

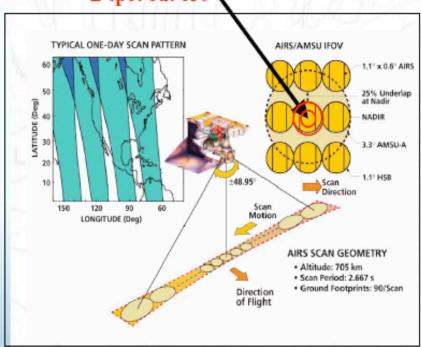


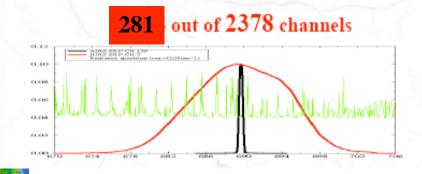

## Scan Bias


- Scan Bias = d(limb) d(nadir)
  - d(.) is departure (omb or oma)
  - This is relative bias between limb and nadir

Scan bias statistics for SWA domain with 15 days data








# AIRS Data (NCEP subset)







### Specifications

| Infrared Spectral Coverage | 3.74 - 4.51 µm |
|----------------------------|----------------|
|                            | 5.20 - 8.22 µm |
|                            | B.80 – 15.4 μm |

#### Spectral Response

Spectral Resolution VCl>1 ZDD nominal Spectral Sampling DV2Integrated Response (95%) ±1 Di Wavelength Stability 0.05 D124 hours Wavelength Knowledge 0.01 D1

#### Spatial Coverage

Scan Angle ±49.5° around nadir IFOY. 1.1° Measurement Simultaneity ×99%

#### Sensitivity (NEDT)

0.14 K at 4.2 µm. 0.20 K from 3.7 - 13.6 μm D.35 K from 13.6 – 15.4 μm.

± 3% absolute error

#### Radiometric Calibration

Power / Mass

256 W / 166 kg

Lifetime

5 years

#### Visible Spectral Coverage $0.41 - 0.44 \, \text{um}$ $0.58 - 0.68 \ \mu m$

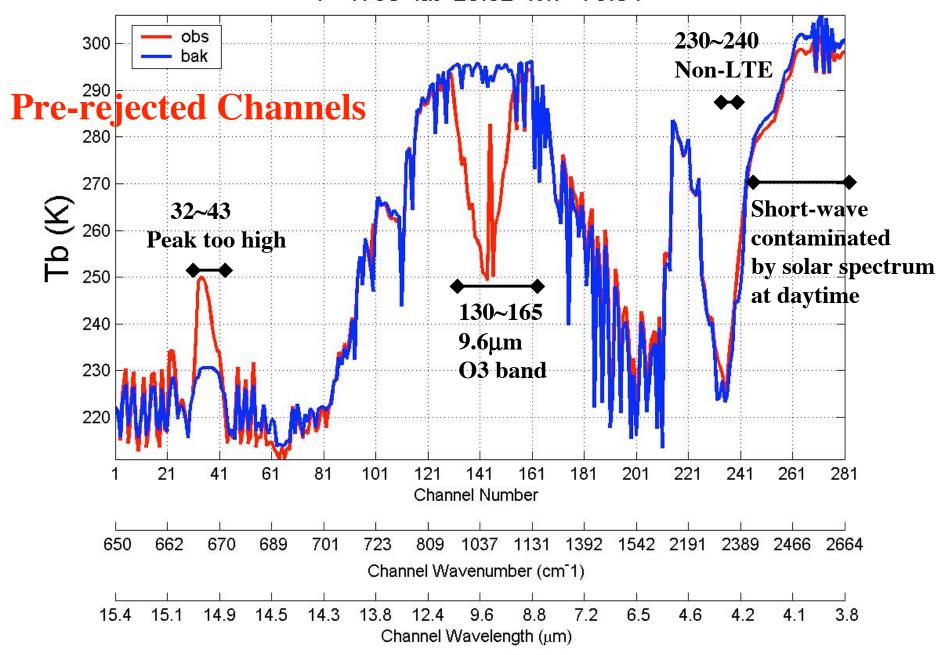
 $0.71 - 0.92 \, \mu m$  $0.49 - 0.94 \, \mu m$ 

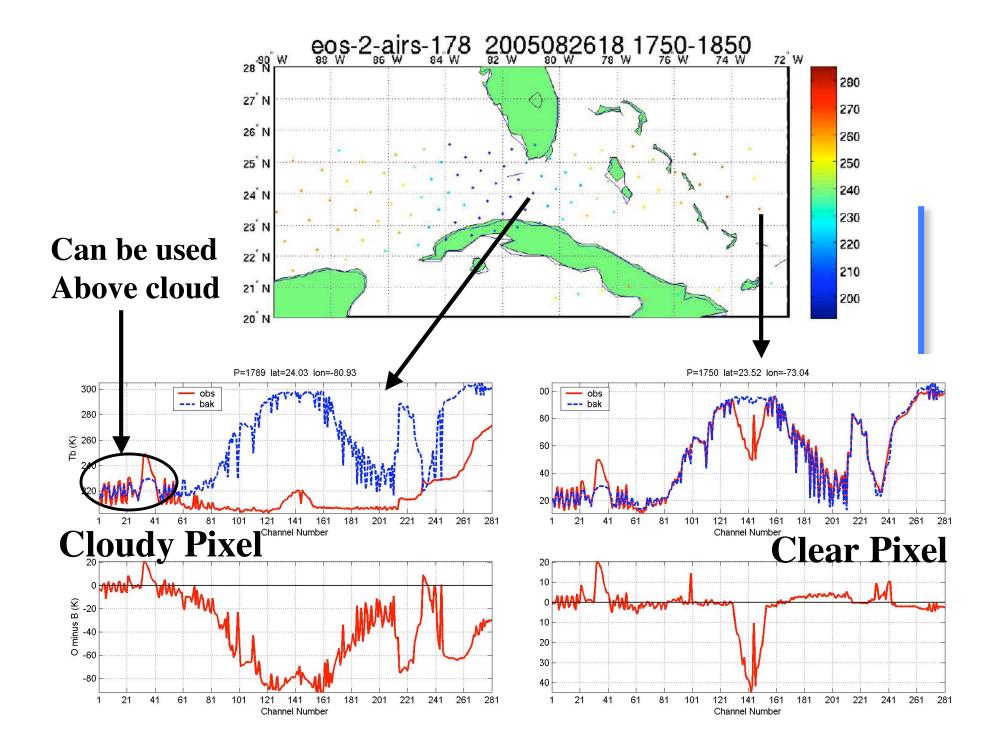
±49.5° around nadir.

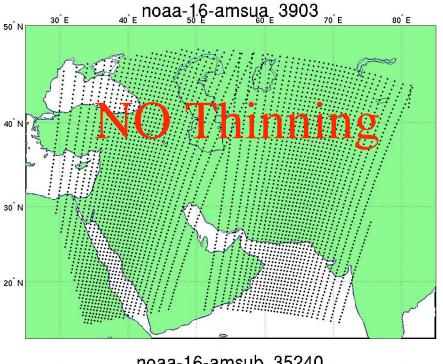
#### Spatial Coverage

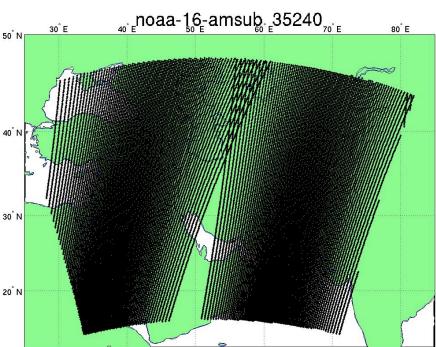
Scan Angle IFOV.

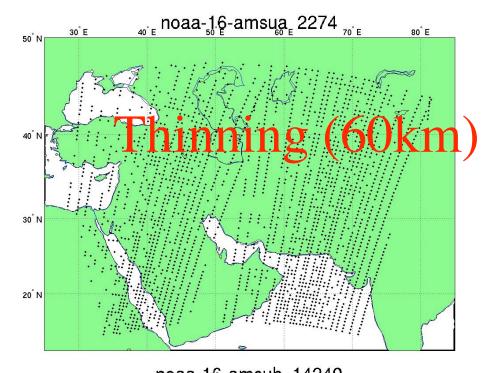
0.1B5°

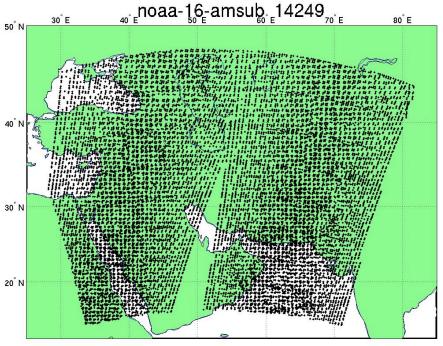

SNR @ **Al**bedo = **0**.4


>100


Polarization


<5%


P=1750 lat=23.52 lon=-73.04











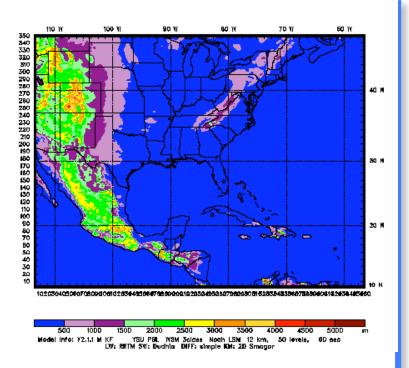



## Load Balancing of Radiance Obs.

• Inhomogeneous observation distributions considered:

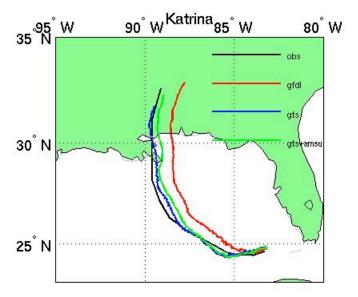
Regular Domain Decomposition, redistribute ob. space calculations

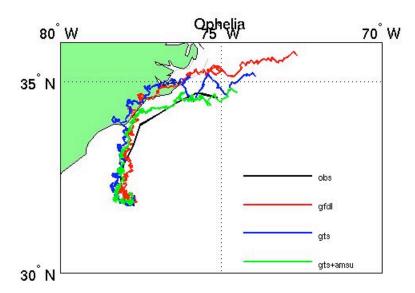



Currently implemented only for RTTOV option.

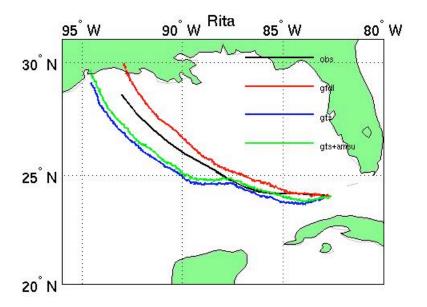


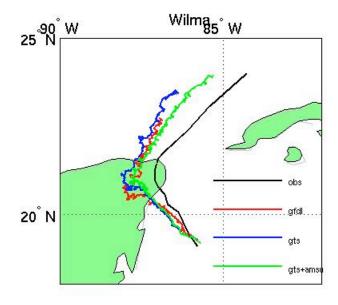
## 2005 Hurricane Experiments

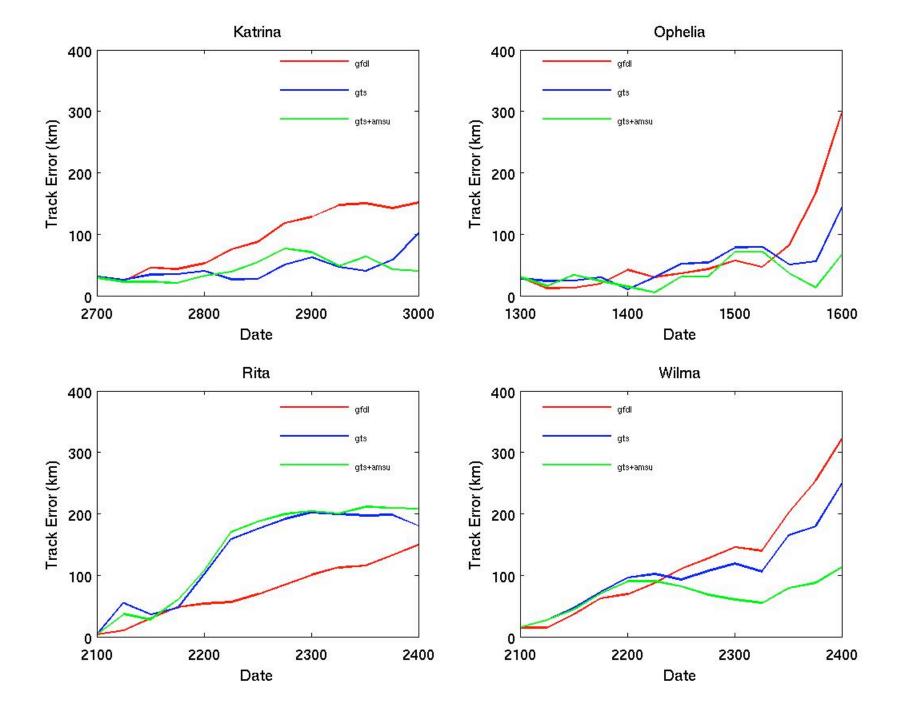

- 4 cases (Initial time is at 00Z):
  - Katrina (0827), Ophelia (0913),
    Rita (0921), Wilma (1021)
- 72h forecasts (WRF-ARW 2.2)
  - Movable nests
    (12km/4km/1.33km), Setup by
    Wei Wang
- 3 experiments:
  - GFDL initialization with bogus (provided by Wei Wang)
  - GTS (only conventional data assimilation)
  - GTS+AMSU (conventional + amsu assimilation)

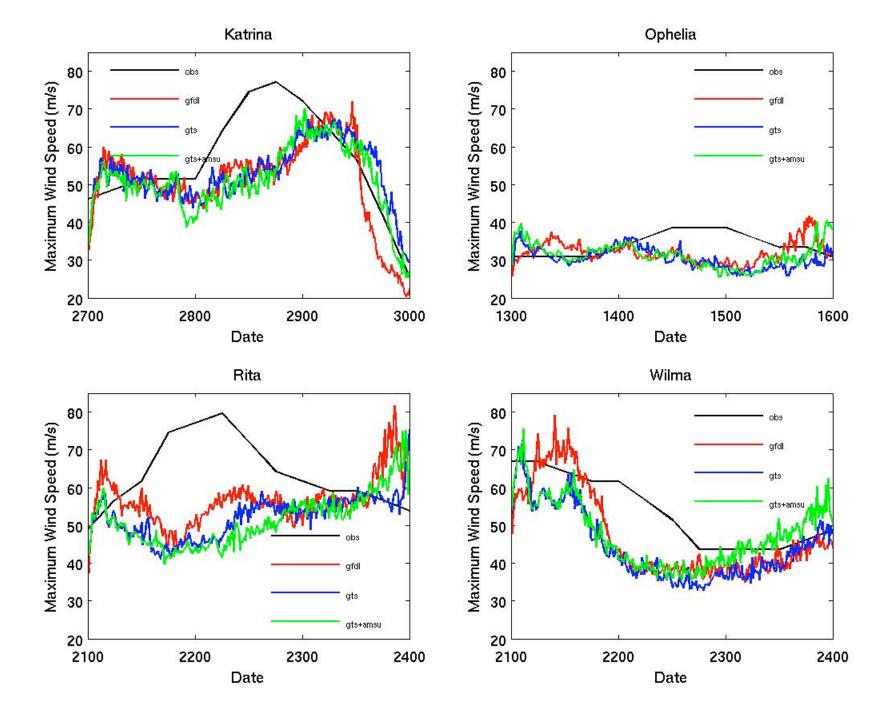

Dataset: bak RIP: surf Fost: 6.00 h Terrain height AMSL Init: 1800 UTC Thu 25 Aug 05 Valid: 0000 UTC Fri 26 Aug 05 (1800 MDT Thu 25 Aug 05)




12km domain Terrain Height




## Track









## Future Plans

- Radiance assimilation capability is planned to be released with WRF/WRF-Var 3.0 in 2008
- Developing Monitoring Tools
  - Crucial to understand observation error characteristics and operational implementation
- Cloudy radiance assimilation
- More sensors
  - SSMIS, METOP, GEOS, future NPOESS etc.
- DATC tests and Applications
  - South East Asia, AMPS, Hurricane, India ...

