UPDATE ON ANALYSIS NUDGING FDDA IN WRF-ARW

Aijun Deng¹, David R. Stauffer¹, Jimy Dudhia², Tanya Otte³ and Glenn K. Hunter¹

¹Penn State University ²NCAR ³NOAA/EPA

8th Annual WRF User's Workshop

National Center for Atmospheric Research, Boulder, Colorado

11-15 June 2007

- Nudging FDDA techniques (both analysis and OBS nudging) was developed at Penn State for MM5 by Stauffer and Seaman in early 1990s.
- Nudging is an efficient way to reduce model errors and it has been successful in MM5 (e.g. DA, DI, better BC for coarse grid)
- Most recent applications include:
 - U.S. Army Profiler (OBS nudging)
 - U.S. Marines NEXGEN (OBS nudging)
 - DTRA in-house MM5 modeling system (OBS and analysis nudging)

- Penn State has implemented a basic 3-D analysis nudging capability in WRF-ARW in WRF2.2 release, supported by EPA and AFWA.
- Basic FDDA functions in WRF-ARW (similar to MM5):
 - User-specified nudging end-time and rampdown period to zero
 - User-specified strength of nudging
 - User-specified nudging within the planetary boundary layer
 - User-specified nudging in lower model layers

Currently

• Nudging u, v, theta, q

μ

• µ is not being nudged

Testing Design

- CAPTEX-83, 48 hours model run, 36-km CONUS domain
 - Starting: 1200 UTC, 18 Sept. 1983
 - Ending: 1200 UTC, 20 Sept. 1983
- 3D Analyses from MM5 RAWINS and converted into WRF input format
- All experiments use M.Y.J PBL scheme, KF CPS, WSM 3-class simple ice, Dudhia shortwave and RRTM longwave radiation.

FDDA Testing Design

Exp No.	Exp Name	FDDA Options
1	nofdda	No FDDA
2	ffdda	Full 3-D FDDA
3	nopbl	FDDA excluded from PBL (by specifying W_{η})
4	zfac	FDDA excluded from low model layers (by specifying W_{η})
5	zftfnr6	Same as Exp. 4, except 6-h ramping down ended at 24 h (by specifying Wt)
6	zftfpr6	Same as Exp. 4, except 6-h ramping down started at 24 h (by specifying Wt)

Verification Strategies

- WFR output is converted into MM5 format
- Statistic verification using Penn State VEROBS for MM5
- Subjective verification by visually looking at the model-simulated weather patterns

MAE of Surface Layer Wind Speed

48-h Averaged MAE of Wind Speed

MAE of Surface Layer Wind Direction

48-h Averaged MAE of Wind Direction

MAE of Surface Layer Temperature

48-h Averaged MAE of Temperature

MAE of Surface Layer Water Vapor Mixing Ratio

48-h Averaged MAE of Water Vapor Mixing Ratio

MAE of Sea-Level Pressure

MM5 vs. WRF

MM5

Subjective Verification

Surface Temperature and Sea Level Pressure

MM5 ANALYSIS

WRF NO FDDA

850 hPa Temperature and Geopotential Height

Geopotential height

at $\hat{\mathbf{p}}$ ressure = 850 hPa

WRF NO FDDA

500 hPa Temperature and Geopotential Height

Geopotential height

at $\hat{\mathbf{p}}$ ressure = 500 hPa

WRF NO FDDA

200 hPa Temperature and Geopotential Height

Geopotential height

Dataset: 36kmRIP: mm5 interp 36kmInit: 1200 UTC Sun 18 Sep 83Fcst:48.00 hValid: 1200 UTC Tue 20 Sep 83 (0900 LDT Tue 20 Sep 83)Temperatureat pressure = 200 hPa at $\hat{\mathbf{p}}$ ressure = 200 hPa

Surface Winds and **Sea Level Pressure**

Dataset: 36km RIP: mm5 interp 36km Fest: 48.00 h Horizontal wind speed Horizontal wind vectors Sea-level pressure Sea-level pressure Sea-level pressure

10

850 hPa Winds and Geopotential Height

MM5 ANALYSIS

500 hPa Winds and Geopotential Height

Dataset: 36km RIP: mm5 interp 36km Fest: 48.00 h Valid: 1200 UTC 7 Horizontal wind speed at pressure Geopotential height at pressure Horizontal wind vectors at pressure

Valid: 1200 UTC Tue 20 Sep 83 (0900 LDT Tue 20 Sep 83) at pressure = 500 hPa at pressure = 500 hPa at pressure = 500 hPa

MM5

ANALYSIS

200 hPa Winds and Geopotential Height

MM5 ANALYSIS

850 hPa Mixing Ratio and Geopotential Height

Dataset: 36kmRIP: mm5interp 36kmInit: 1200 UTC Sun 18 Sep 83Fcst: 48.00 hValid: 1200 UTC Tue 20 Sep 83 (0900 LDT Tue 20 Sep 83)Water vapor mixing ratioat pressure = 650 hPaBack ParticipationBack Participation Geopotential height

at pressure = 850 hPa

WRF NO FDDA

Summary and Conclusions

- Penn State has implemented a basic 3-D analysis nudging FDDA capability
 - User-specified nudging end-time and rampdown period to zero
 - User-specified strength of nudging
 - User-specified nudging within the planetary boundary layer
 - User-specified nudging in lower levels
- Testing and statistical verification on CAPTEX-83 case show that all FDDA switches work properly as designed.
- WRF simulations of weather patterns are improved by applying analysis nudging FDDA.
- Effects of analysis nudging FDDA in WRF-ARW are similar to MM5

Future Work

Penn State (with NCAR as subcontractor) has received new three-year funding from DTRA to continue the research and development of both analysis and OBS nudging for WRF.

- More general analysis nudging (e.g. including surface analysis nudging through PBL)
- The analysis and observation nudging will also be designed to better use statistical information from variational and ensemble Kalman filter methods
- Exploration of new hybrid nudging-variational-EnKF techniques, etc.

—

Nudging FDDA

$$\frac{\partial \alpha}{\partial t} = G \bullet (\alpha_{ob} - \alpha) + \dots$$

$$\int_{0}^{t} () dt \Longrightarrow \alpha(t) = (\alpha_{0} - \alpha_{ob}) \bullet e^{-Gt} + \alpha_{ob}$$

$$\alpha(t) = (\alpha_o - \alpha_{ob}) \bullet e^{-Gt} + \alpha_{ob}$$
$$\frac{1}{G} \equiv e - folding time \quad O(1h)$$

WRF Mass-Coordinate Model Integration Procedure

End time step

Domains: 108, 36, 12 and 4 km

