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Goddard radiation packages
• Goddard radiation package  has been developed for two decades at NASA Goddard by Ming-Dah Chou and 

Max J. Suarez for use in general circulation models (GEOS GCM), regional model (MM5) and cloud-
resolving models (Goddard Cumulus Ensemble mode, GCE model). 

Wavelength SW (solar) LW (thermal)

Flux solution Two-stream adding method Schwarzchild equation

# of bands UV&PAR(8 bands) 
Solar-IR(3 bands)

10 bands

Optical approximation
Delta-Eddington approximation (for 

scattering and transmission)
Henyen-Greenstein function (for scattering), 

One/two-parameter scaling, modified k-
distribution (for absorption)

Optical parameters
H2O, O2, O3, CO2, condensates (cloud 

water, cloud ice, snow, rain, and graupel), 
aerosols (sulfate and precursors, dust, black 

carbon, organic carbon, sea salt)

H2O, O3, CO2, trace gases (N2O, CH4 , 
CFC11, CFC12, CFC22),

condensates (cloud water, cloud ice, snow, 
rain, and graupel), aerosols (sulfate and 

precursors, dust, black carbon, organic carbon, 
sea salt), 

Accuracy Heating rate error within 5% accuracy in 
comparison with a LBL model. 

Cooling rate error within 0.4K/day in 
comparison with a LBL model. 

References
Chou M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Rep. NASA/TM-1999-10460, vol. 15, 38 pp
Chou M.-D., and M. J. Suarez, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA/TM-2001-104606, vol. 19, 55pp

Allow explicit cloud-radiation interactions (a routine to calculate cloud optical property that can be 
used for other WRF Microphysics) and aerosol direct effect

Important for high-resolving model simulations



New Goddard SW radiation in comparison with old 
Goddard SW radiation in WRF

1) Optical depths for condensates (1st-order effect)
• NewRad has a strict threshold of cloud optical depth (0.0001) for cloud flags in order to account 

for thin-cloud radiative effects. (OldRad has a loose threshold (0.05), and does not account for thin-
cloud radiative forcing.)

• NewRad accounts for optical properties of rain, ice+snow, and liquid cloud droplets. Ice cloud 
effective radius (25~125micron) depends on ambient temperature. (OldRad accounts for only ice 
and liquid cloud droplets. Ice cloud effective radius is fixed value (80micron). )

2) Radiative Transfer (2nd-order effect)
• NewRad has a correct two-stream adding approximation in diffuse transmissivity. (OldRad uses 

incorrect diffuse transmissitivity. This is a critical bug in the code. ).
• NewRad uses delta-Eddington approximation for reflection and transmittance of direct and diffuse 

radiation. (OldRad also uses delta-Eddington approximatatin for direct radiation, but it uses 
equations in Sagan and Pollock [JGR, 1967] for diffuse radiation.)

3) Molecular absorption (3rd-order effect)
• NewRad weights the molecular absorption coefficients by cosine of solar zenith angle. (OldRad

uses the same molecular absorption coefficients without considering cosine of solar zenith angle.)
• NewRad accounts for water vapor absorption. (OldRad does not account for water vapor 

absorption.) 
• NewRad accounts for O2 and CO2 absorption above and below cloud-top level. Below cloud-top 

level, the flux reduction rate depends on the ratio of clear-sky and cloudy-sky net radiation. (OldRad
accounts for O2 and CO2 absorption only above cloud-top level.)



CPU time in OldRad, NewRad and NewRadFast (Lookup Table)

Test 
• Old (OldRad) and new (NewRad) Goddard 

SW radiation were tested in all-sky 
conditions of 45x45x30-grid (1 km grid 
spacing) domains to compare CPU time. 
This case is a Canadian lake-effect-
snowstorm event. (Use 2.16GHz Intel Core 
processor, g95 -O1)

Overcast option 
• In both Goddard SW radiation 

schemes, there is a logical option 
(overcast)

overcast = .true. 
cloud fraction = 0 or 1

overcast = .false.
cloud fraction = 0~1

requires two-stream solutions in 
different combination of clear-
cloudy-sky cases, which result in 
much longer computational time.
Note that overcast is always .true. if dx
< 2-3 km grid spacing.

overcast OldRad NewRad NewRadFast

.true. 1.6sec 3.0sec 2.1sec

.false. 4.5sec 4.1sec 4.1sec

Results
NewRad takes nearly twice in CPU time in 
comparison with OldRad in overcast=true option. 
This is because NewRad requires double solutions 
of the two-stream adding method for clear- and 
cloudy-sky conditions in order to compute cloudy-
clear-sky net radiation ratio (Fcloud/Fclear) for within 
cloud CO2 and O2 absorption.
New feature
Add new logical option (fast_overcast), and 
“fast_overcast =.true.” uses a pre-computed look-
up table for Fcloud/Fclear as a function of cloud 
albedo. This version is called NewRadFast



Comparison in SW flux and heating rate between 
NewRad, OldRad, and NewRadFast

Results
NewRad-OldRad differences in 

surface downwelling shortwave 
radiation are up to ±40W/m2. This 
is mostly due to upgrade (1). It has 
large discrepancy in heating 
profile up to ±2K/day.

NewRad-NewRadFast differences in 
surface downwelling shortwave 
radiation are up to ±1W/m2. It has 
discrepancy in heating profile up 
to ±0.5K/day.

Note that all the case uses 
overcast=.true.

Y-distance=120km



Similar comparison, but using the same cloud-
detection threshold

Results
Difference down to ~5W/m2

in surface downwelling 
shortwave radiation. This 
is mostly due to upgrade 
(3). It still has large 
discrepancy in heating 
profile due to upgrade (2).

Note that all the case uses 
overcast=.true.

Y-distance=120km



Options in Goddard LW radiation code and CPU 
time

Goddard LW logical options
• “high=.true.”computes transmission 

functions in the CO2, O3, and the three water 
vapor bands with strong absorption using 
look-up table, while “high=.false.” use k-
distribution methods (faster).

• “trace = .true.” accounts for absorption due 
to N2O, CH4, CFCs, and the two minor CO2
bands in the LW window region, while “trace 
= .false.” does not account for (faster). 

• A combination of “high=.true.” & 
“trace=.true.” is most accurate.

• Note that these options can be modified at the 
top of code in the module_ra_goddard.F.

Exp Name high trace CPU time (sec)

RHT .true. .true. 2.80 (170%)

RH .true. .false. 2.13 (129%)

RT .false. .true. 2.19 (133%)

R .false. .false. 1.65 (100%)

Results

Each option (high or trace) costs about 0.6sec, 
thus the no-options experiment (R) save 1.2sec 
CPU time in comparison with the full-option 
experiment (RHT)



Comparison in LW flux and heating rate between 
RHT, RH, and RT.

Results
• Downwelling longwave radiation 

between RHT and RT are similar. 

• LW cooling profiles between RHT
and RH are largely different near 
the cloud top. 

• LW cooling profiles between RHT
and RT are slightly different at 
TOA. If one include the 
stratosphere in model, the RHT-
RT difference would become 
larger [Chou and Suarez 2001].

Y-distance=120km



Physics:

• Cu parameterization: Grell-Devenyi scheme (for 
the outer grid only)

• Cloud microphysics:

Goddard microphysics 3ice-Graupel    

• Radiation:

shortwave: Dudhia, old and new Goddard

longwave: RRTM and Goddard  

• PBL parameterization:

Mellor-Yamada-Janjic TKE scheme

• Surface Layer:

Monin-Obukhov (Janic)

• Land Surface Model: Noah land-surface

Resolutions: 27, 9 and 3 km      
Grid size: 391x313, 427x427, 451x451, and 
31vertical layers
Δt = 90 seconds
Starting time: 00Z 05/01/2005
Initial and Boundary Conditions: 

NCEP/GFS, no data assimilation



RRTM LW (coupled w/  old Goddard SW)

RRTM LW (coupled w/  Dudhia SW))

Goddard LW (coupled w/ new Goddard SW)

Old Goddard SW (coupled w/ RRTM LW) 

Dudhia SW (coupled w/RRTM LW)

New Goddard SW (coupled w/ Goddard LW)

Larger difference in LW (>0.5
K/day) in middle troposphere
than SW (<0.3 K/day), and 
virtually no difference in LW 
below 900 mb

Larger difference in upper 
troposphere in both LW and 
SW due to different cloud 
optical properties   

Next: Separate heating/cooling 
in the cloudy and cloud free 
region

Domain- and 24h-Averaged Radiation Cooling and Heating 





Conclusions and Future Works
• Goddard long- and short-wave radiative transfer modules have been implemented 

into WRF 

• Goddard radiative transfer modules can allow explicit interactions with microphysical 
processes (cloud optical property) - required for high-resolution WRF simulations

• Goddard radiative transfer modules can include aerosol direct effect by coupling the 
Goddard global aerosol transport model (i.e., GOCART aerosol mass and optical 
properties)

• Differences between current and new WRF Goddard shortwave transfer module 
have been identified - difference can be 40 w/m2 at surface (cloud properties, 
molecular absorption and radiative transfer) 

• Difference in computational cost between current and new WRF Goddard  
shortwave transfer module have been identified (depends on requirement -accuracy)

• WRF has linked to satellite (Earth) simulators (microwave, dual frequency 
precipitation radar, lidar, cloud radar, IR…).



END
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Goddard WRF supports NASA Global Precipitation 
Mission (GPM)

• Radar reflectivity and 
microwave brightness 
temperature are 
computed in off-line 
using the WRF-
simulated meteorology 
and hydrometeors field 
via satellite-data 
simulation unit (SDSU).

• Simulated Tb and 
reflectivity are used to 
support NASA Global 
Precipitation Mission 
(GPM).
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