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We are developing of a framework for studying
atmospheric dispersion problems involving multiple
scales and complex terrain, e.g. urban environments

m » THE WEATHER RESEARCH & FORECASTING MODEL

Nesting WRF down to LES scales to
provide boundary conditions for CFD _
models (or resolve urban areas directly) T
requires improved complex terrain and =T s s m s
turbulence modeling capabilities. LLNL’s CFD model, FEM3MP



http://wrf-model.org/index.php

LES requires modeling of the subfilter-scale (SFS) stresses

5,0, +0,(U0,) =0, =8z, 4
ui(x) = [G(x - y)u; (y)dy
Tij E?Uj_aiaj

Spectral LES requires a model for
the subgrid-scale (SGS) stresses.
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LES requires modeling of the subfilter-scale (SFS) stresses
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all scales up to the filter cutoff.
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Discrete LES (WRF) requires an additional model
for the Resolvable Subfilter-Scale (RSFS) Stresses
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Discretization effects attenuate the
energy of resolved flow structures



Modeling the Resolvable Subfilter-Scale Stresses

Subfilter-scale Stresses

I~

; = (U, _Uiaj)Jr(Uin _uiﬁj)
SGS RSFS

Reconstruction

Approximate Deconvolution Model
Unfiltered velocities are
reconstructed (approximately) by
successive applications of an
explicit filter, G (tophat)

~

0, =0; +(1-G)I, + (I -G)[(1 -G)T,] +...

Discrete LES (WRF) requires an additional model
for the Resolvable Subfilter-Scale (RSFS) Stresses
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Subgrid-scale stresses

Any SGS model can be used for the ‘SGS’ part of the SFS stresses:

WREF utilizes either a Static Smagorinsky or a TKE-based SGS model
Do not permit backscatter
Assume local balance between TKE production and dissipation

Contribute significant errors

We have implemented the Dynamic SGS Model of Wong and Lilly
Formulates SGS stresses based on smallest well-resolved stresses
Permits backscatter
Does not assume local balance between TKE production and dissipation

(Brown et al. 2001): 7, = — j C.a(z)Ui | Ti | dz
a(z) =cos(z/H)?
Total DRM SFS stress model:
Tij = RSFS +S8GS +



Results for neutral, geostrophic flow over a flat, rough plate

ug=10.0, Vg = 0, z,=0.1, 423 nodes, ~1500m* domain, Ax=Ay=32m, Az stretched, lowest = 10m

1.0 " 7 '3‘!
~ TOTAL 71
| RESOLVED FA

I

0.8 65 1]
- F
B & i
L f =

i

0.6 s Il

- T & ]
~ - amean SMAGORINSKY [
H o TKE M;"ﬁ .

0.4 __ “;;:;’:’3}.# -i__

N AR £
‘1.".."}'/ l.'

| ‘1."1"# ]_- _
_‘:_:.EJ"" £

CI.Q __ '_."::.-;:F::'j'l:.:'i -:- __

’,“!}“‘1!‘ ‘f

e ]

D.D 1-5;‘::’ g 8 (et it meied RRR Ar_‘.r.:f-:l:-?m-_:‘ﬁlﬁ:'ﬁl::. ''''' b Ll L _LF T !

—1.0 —0.8 —0.6 —0.4 —0.7 0.0



Results for neutral, geostrophic flow over a flat, rough plate

ug=10.0, Vg = 0, z,=0.1, 423 nodes, ~1500m* domain, Ax=Ay=32m, Az stretched, lowest = 10m
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Partitioning of DRM SFS stresses
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WRF SGS models deviate from the Log Law
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DRM improves agreement with the with Log Law
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DRM increases high-frequency power near the surface as
seen in velocity spectra

(£33

Z~5m
100 T | T T T T | ‘]OO
e, =273
107 ' 107!
1072 1072
e

1073 10_3:_ E

[ DRM :‘ ]
107" E SMACCRINSKY 1071 E SMACORINSKY p— . 107 E SMACORINSKY

L Z=4.66366m . L 7=48.4589m . L 7=9B.5631m
1073 L , | , 1073 L , | , 1075 L , |

1 10 1 10 1 10
K k k

averaged u-velocity spectra



DRM increases high-frequency power near the surface as
seen in velocity spectra
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DRM decreases streamwise streaks in velocity field

Smagorinsky

instantaneous u-velocity contours at ~50 m



Immersed Boundary Method (IBM) will provide complex
terrain capability using WRF’s native grid.
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Helght [m]

The Immersed Boundary Method expands WRF
applicability to flows over steep terrain

Streamlines for 2—-D Flow over a Rectangular Cylinder using the Immersed Boundary Method
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Conclusions

DRM turbulence model significantly improves LES performance at a reduced
cost over increasing resolution throughout the domain.

Immersed boundaries will increase WRF'’s flexibility for use in environments
with complex terrain: urban environments

Future Work

Further experimentation with model parameters

Implementation of the nonlinear backscatter SGS model of Kosovié, 1997

Validation in nonidealized simulations (non neutral, terrain, synoptic forcing, etc.)

Nesting of LES domain, downscaling issues
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