

Demonstration of an Improved Subfilter Stress Closure for WRF

J. D. Mirocha¹ J. K. Lundquist¹ F. K. Chow² K. A. Lundquist²

¹Lawrence Livermore National Laboratory ²University of California at Berkeley

8TH Annual WRF User's Workshop, 11-15 June 2007 Boulder CO

This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. UCRL-PRES-231514 We are developing of a framework for studying atmospheric dispersion problems involving multiple scales and complex terrain, e.g. urban environments

THE WEATHER RESEARCH & FORECASTING MODEL

Nesting WRF down to LES scales to provide boundary conditions for CFD models (or resolve urban areas directly) requires improved complex terrain and turbulence modeling capabilities.

LLNL's CFD model, FEM3MP

LLNL and UCBerkeley are implementing a new complex terrain approach and several new turbulence subfilter stress models for improved large eddy simulation (LES) capability

LES requires modeling of the subfilter-scale (SFS) stresses

$$\partial_t \overline{u}_i + \partial_j (\overline{u}_i \overline{u}_j) = -\partial_i \overline{p} - \partial_j \tau_{ij} + \cdots$$
$$\overline{u}_i (x) = \int G(x - y) u_i(y) dy$$
$$\tau_{ij} \equiv \overline{u_i u_j} - \overline{u_i u_j}$$

Spectral LES requires a model for the subgrid-scale (SGS) stresses.

Spectral LES can fully resolve all scales up to the filter cutoff.

LES requires modeling of the subfilter-scale (SFS) stresses

$$\partial_t \overline{u}_i + \partial_j (\overline{u}_i \overline{u}_j) = -\partial_i \overline{p} - \partial_j \tau_{ij} + \cdots$$
$$\overline{u}_i (x) = \int G(x - y) u_i(y) dy$$
$$\tau_{ij} \equiv \overline{u_i u_j} - \overline{u_i u_j}$$

$$\partial_{t}\overline{\widetilde{u}}_{i} + \partial_{j}(\overline{\widetilde{u}}_{i}\overline{\widetilde{u}}_{j}) = -\partial_{i}\overline{\widetilde{p}} - \partial_{j}\widetilde{\tau}_{ij} + \cdots$$
$$\overline{\widetilde{u}}_{i} = D(\overline{u}_{i})$$
$$\tau_{ij} \equiv \overline{u_{i}u_{j}} - \overline{\widetilde{u}}_{i}\overline{\widetilde{u}}_{j}$$

Spectral LES requires a model for the subgrid-scale (SGS) stresses

Discrete LES (WRF) requires an additional model for the Resolvable Subfilter-Scale (RSFS) Stresses

Spectral LES can fully resolve all scales up to the filter cutoff.

Discretization effects attenuate the energy of resolved flow structures

Modeling the Resolvable Subfilter-Scale Stresses

Subfilter-scale Stresses

$$\tau_{ij} = (\overline{u_i u_j} - \overline{\widetilde{u_i} \widetilde{u_j}}) + (\overline{\widetilde{u_i} \widetilde{u_j}} - \overline{\widetilde{u_i}} \overline{\widetilde{u_j}})$$
SGS RSFS

$$\partial_{t}\overline{\widetilde{u}}_{i} + \partial_{j}(\overline{\widetilde{u}}_{i}\overline{\widetilde{u}}_{j}) = -\partial_{i}\overline{\widetilde{p}} - \partial_{j}\widetilde{\tau}_{ij} + \cdots$$
$$\overline{\widetilde{u}}_{i} = D(\overline{u}_{i})$$
$$\tau_{ij} \equiv \overline{u_{i}u_{j}} - \overline{\widetilde{u}}_{i}\overline{\widetilde{u}}_{j}$$

Reconstruction

Approximate Deconvolution Model Unfiltered velocities are reconstructed (approximately) by successive applications of an explicit filter, G (tophat)

$$\widetilde{u}_i = \overline{\widetilde{u}_i} + (I - G)\overline{\widetilde{u}_i} + (I - G)[(I - G)\overline{\widetilde{u}_i}] + \dots$$

Discrete LES (WRF) requires an additional model for the Resolvable Subfilter-Scale (RSFS) Stresses

NE: Numerical Errors limit reconstruction

Discretization effects attenuate the energy of resolved flow structures

Subgrid-scale stresses

Any SGS model can be used for the 'SGS' part of the SFS stresses:

WRF utilizes either a Static Smagorinsky or a TKE-based SGS model

Do not permit backscatter

Assume local balance between TKE production and dissipation

Contribute significant errors

We have implemented the Dynamic SGS Model of Wong and Lilly

Formulates SGS stresses based on smallest well-resolved stresses

Permits backscatter

Does not assume local balance between TKE production and dissipation

Near-wall stress model (Brown et al. 2001): $\tau_{i,\text{wall}} = -\int C_c a(z) \overline{\widetilde{u}}_i | \overline{\widetilde{u}}_i | dz$ $a(z) = \cos(z/H)^2$

Total DRM SFS stress model:

 τ_{ij} = RSFS + SGS + WALL

Results for neutral, geostrophic flow over a flat, rough plate

 u_g =10.0, v_g = 0, z_0 =0.1, 42³ nodes, ~1500m³ domain, Δx = Δy =32m, Δz stretched, lowest = 10m

Results for neutral, geostrophic flow over a flat, rough plate

 u_g =10.0, v_g = 0, z_0 =0.1, 42³ nodes, ~1500m³ domain, Δx = Δy =32m, Δz stretched, lowest = 10m

Partitioning of DRM SFS stresses

WRF SGS models deviate from the Log Law

DRM improves agreement with the with Log Law

DRM increases high-frequency power near the surface as seen in velocity spectra

averaged u-velocity spectra

DRM increases high-frequency power near the surface as seen in velocity spectra

averaged v-velocity spectra

DRM decreases streamwise streaks in velocity field

instantaneous u-velocity contours at ~50 m

Immersed Boundary Method (IBM) will provide complex terrain capability using WRF's native grid.

Explicit surface terrain

The Immersed Boundary Method expands WRF applicability to flows over steep terrain

Conclusions

DRM turbulence model significantly improves LES performance at a reduced cost over increasing resolution throughout the domain.

Immersed boundaries will increase WRF's flexibility for use in environments with complex terrain: urban environments

Future Work

Further experimentation with model parameters

Implementation of the nonlinear backscatter SGS model of Kosović, 1997

Validation in nonidealized simulations (non neutral, terrain, synoptic forcing, etc.)

Nesting of LES domain, downscaling issues