

Development of an Offline WRF/Chemistry model

Mohit Dalvi Centre for Development of Advanced Computing, Pune Univ. Campus, Pune, India

> Georg Grell & Steven Peckham NOAA/ESRL and CIRES, Univ. of Colorado, Boulder, Co, USA

> > Bill Skamarock NCAR/ MMM, Boulder, Co, USA

Supported by INDO-US NSF Grant ATM-0527322 1542249

Structure

- Concept of an "Offline" Model
- Design of the Offline WRF/Chem
- > Implementation Overview
- Online-Offline Comparisons
- Current Status

Earth System Research Laboratory

Offline Model - Concept

Need for an Offline Chemistry Model

When realtime meteorology and feedback not significant, and repeated chem runs . e.g.

- Model Development: introduction/ improvement of chemical schemes
- Testing, Sensitivity studies
- Regulatory application (evaluation of emission control strategies)

Community request for comparison to other offline models

Comparison to online runs

Design of Offline WRF/Chem

- Seamless (Chem shouldn't know whether it is online or offline)
- Uniformity in Spatial resolution, schemes, parameterizations
- Use time averaged fields for interpolated meteorology to drive WRF/Chem CTM (mass consistent)
- Fully integrated in WRF Software Framework
- > User-friendly, mainly runtime controls

Implementation Overview

Code & data flow analysis

- Identify Met Chem dependency & exchanges
- Variables used by chem. and when to output (in given timestep)
- New advection scheme (FIT, W. Skamarock) for chemical species in offline (and online)
- Algorithm for Time averaging based on the timestep and desired frequency of output

Implementation Overview

- Routines for averaging and output (Online); input and time interpolation (Offline)
- Integration into WRF Framework:
 - which operation goes into what layer
 - I/O using existing WRF streams and API
 - required variables defined in separate registry
 - compilation controlled by Environment variable
 - "Normal", "Online" and "Offline" controlled by namelist variable

> Pre processing: output & input timestamp matching

Flow Diagram for Offline Runs

Online - Offline Comparisons 60 km North-east US domain, hourly averaged

System	Online	Offline	Single offline run	10 online runs	10 offline runs	Gain
Xeon,Linux (4 cpu)	1200 s	1020 s	2220 s	12000 s	11400 s	15 %
IBM,AIX (4 cpu)	1856 s	1440 s	2296 s	18560 s	16256 s	13 %

Online - Offline Comparisons 12 km, New England, multiple averaging periods

Accuracy varies with averaging time at high resolutions. Need more sensitivity studies before use

Current Status and Future work

- Implemented in WRF/Chem 2.2 testing for repository inclusion
- > Official release expected with WRF 3.0
- > Improvements to FIT advection scheme (W. Skamarock)
- Online-offline sensitivity runs for different resolutions, chemical schemes
- Documentation and User guide

Thank You

Email: mohitd@cdac.in

Group webpage:www.cdac.in/html/secg/cas.asp