Development of a prototype flash-flood prediction system for the Colorado Front Rang using the coupled WRF/Noah-Distributed Hydrometeorological Prediction System

David J. Gochis, David N. Yates, and Wei Yu, Fei Chen

National Center for Atmospheric Research
Research Applications Laboratory

8th Annual WRF User’s Workshop, June 14, 2007
Critical needs and challenges for improved flash flood prediction

- USGS/FEMA Reports: Significant annual losses of life and property
- Spatial and temporal scale of flood generation processes *and* impacts necessitate very highly-resolved systems
- Regions of complex terrain can be particularly vulnerable due rapid collection and transport of flood waters in catchments
- The (growing) urban landscape also imparts significant challenges to traditional watershed modeling approaches
- Many events exhibit low predictability thus necessitating probabilistic approaches

Photo courtesy: Cornerstones Community Partnerships
The hydrologically-enhanced Noah-distributed Land Surface Model

(Gochis and Chen, 2003, NCAR Tech Note)

Dynamical Routing Methodologies

Explicit diffusive wave overland flow

Groundwater discharge, reservoir routing &

Explicit channel routing

North Pacolet Streamflow Verification

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Coupled and Uncoupled Modeling Strategy:

Precipitation Forcing:

- Nowcasts
- Gauges: ALERT +
- WRF (1 km)

Assimilated land/stream conditions:

- HRLDAS / Noah-distributed

Streamflow Forecast:

- 0-2 hr ‘warnings’
- 2-24 hr ‘risk’

Disseminate products:

- UDFCD
- NWS, OHD

Optional post-processing:

Add’tl Met. Forcing: EDAS, NAM

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Current applications and deployments:

Walnut River Basin, KS, USA
(land-atmosphere coupling)

Santee River Basin, SC, USA
(land-falling Tropical storms)

American River Basin, CA, USA
(snowmelt hydrology)

North American monsoon, Mex.
(monsoon hydrology)

Romanian operational hydrologic modeling

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Coupled WRF-Hydro Flash Flood Forecasting in the Colorado Front Range:

- **WRF Model Options**
 - No convection parameterization
 - Purdue/Lin 6-class microphysics
 - RRTM LW, Dudhia SW
 - Yonsei PBL, M-O sfc lyr
 - Noah land surface model w/ and w/out coupled Noah-distributed routing
 - Various initialization times

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Coupled WRF-Hydro Flash Flood Forecasting in the Colorado Front Range:

- Noah-distributed specifications:
 - 1 km Noah grid w/ 100m explicit terrain routing
 - NHDPlus 100m terrain
 - Trained stream network delineation based on NHDPlus ‘blue-lines’
 - STATSGO 1km soils
 - USGS 1km land cover

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Case Study: 1997 Ft. Collins Flood Event (see Peterson et al. 1997 BAMS)

- July 28-29, 1997
- Max. accumulations > 10 in. (250 mm) in 6 hrs.
- 5 fatalities
- Over $200M in damages
- Warm season quasi-stationary convective event

Case Study: 1997 Ft. Collins Flood Event

1 hr rain rates: Jul. 29, 1997 0100Z

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Case Study: 1997 Ft. Collins Flood Event

Mesoscale Analysis

Observed Analysis

“Denver Cyclone”

1 km WRF-no routing:
Init. July 27 12z

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Case Study: 1997 Ft. Collins Flood Event

Mesoscale Analysis

Observed Analysis

"Denver Cyclone"

1 km WRF-w/ routing:
Init. July 27 12z

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Case Study: 1997 Ft. Collins Flood Event

Mesoscale Analysis

1 km WRF-w/out routing:
Init. July 27 12z

1 km WRF-w/ routing:
Init. July 27 12z

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Case Study: 1997 Ft. Collins Flood Event

Mesoscale Analysis

1 km WRF-w/out routing:
Init. July 27 12z

1 km WRF-w/ routing:
Init. July 27 12z

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Case Study: 1997 Ft. Collins Flood Event

Mesoscale Analysis

1 km WRF-w/out routing:
Init. July 27 12z

1 km WRF-w/routing:
Init. July 27 12z

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Case Study: 1997 Ft. Collins Flood Event

Accumulated Precipitation

1 km WRF-no routing:
Init. July 27 12z

1 km WRF-with routing:
Init. July 27 12z

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Case Study: 1997 Ft. Collins Flood Event

1 km WRF-w/out routing:
Init. July 27 12z

1 km WRF-w/ routing:
Init. July 27 12z

Gochis et al., 8th Annual WRF User's Workshop, June 14, 2007
Case Study: 1997 Ft. Collins Flood Event

1 km WRF-w/out routing: Init. July 27 12z

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Case Study: 1997 Ft. Collins Flood Event Mesoscale Analysis

1 km WRF-w/out routing:
Init. July 27 12z

1 km WRF-w/ routing:
Init. July 27 12z

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Case Study: 1997 Ft. Collins Flood Event
Hydrological Model Results

1 km WRF-w routing:
Terrain Heights (m)

1 km WRF-w routing:
Init. July 15 0z - Top Layer
Surface water Depth (mm)

1 km WRF-w routing:
Init. July 15 0z -
Accum. Stream Inflow (mm)

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Concluding thoughts and future activities:

- Much work remains in analyzing the thermodynamic forcing of convection and precipitation in WRF runs:
 - Inclusion of routing component in Noah-WRF appears to have surprisingly significant effect Jul. 28-29 storm events
 - Early, intense, terrain convection in routing model case produces precipitation regime more like that observed over flooding domain
 - Significant interaction with propagating convection in the Denver area

- Need to complete control/spin-up runs for the hydrological model for Ft. Collins event:
 - Several unresolved issues related to estimation of precip. rates from Stage II radar data
 - Nowcast runs will follow directly
 - Stream/reservoir network over this large region needs to be completed for channel routing

Gochis et al., 8th Annual WRF User's Workshop, June 14, 2007
Romanian Operational Hydrological Modeling:

- DEStuctive WATers Abatement Program
- World Bank funded project to support Romania’s application to EU
- NCAR tasked to provide modeling support to Baron AMS and NASA-LIS team
- Implementation and real-time forecasts began Oct. 1, 2006
Framework for Hydrometeorological Prediction System Development

1. Obtain and Process Meteorological Forcing Data
 - Observed Met. Forcing
 - Precipitation
 - Temperature
 - Humidity
 - Radiation
 - Wind
 - Pressure
 - Drive ‘Offline’ Land Surface Model
 - NCAR-HRLDAS/
 - NASA-LIS

2. Land Data Assimilation Cycling

3. Weather and Climate Model Initialization

4. Generation of Coupled Hydrometeorological Forecasts

5. Post-process data within Decision Support Systems

Emergency Management Decision Support Systems
Coupled WRF-Hydro Flash Flood Forecasting in the Colorado Front Range:

4 km and 1 km WRF Domains

100m Topography on 1km Domain

USGS NHDPlus terrain

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Case Study: 1997 Ft. Collins Flood Event

Accumulated Precipitation

Ft. Collins rain gauge locations

Spring Creek radar coverage

Gochis et al., 8th Annual WRF User's Workshop, June 14, 2007
Case Study: 1997 Ft. Collins Flood Event

Accumulated Precipitation

WRF vs. Rain Guages

WRF vs. CHILL

WRF vs. KCYS NEXRAD

1 km WRF-no routing:
Init. July 27 12z

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Case Study: 1997 Ft. Collins Flood Event

Accumulated Precipitation

WRF vs. Rain Guages

Start of radar data

WRF vs. CHILL

WRF vs. KCYS NEXRAD

1 km WRF-with routing: Init. July 27 12z

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Case Study: 1997 Ft. Collins Flood Event

Accumulated Precipitation

WRF vs. Rain Gauges

WRF vs. CHILL

WRF vs. KCYS NEXRAD

1 km WRF-no routing:
Init. July 28 06z

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Case Study: 1997 Ft. Collins Flood Event

Accumulated Precipitation

WRF vs. Rain Guages

WRF vs. CHILL

WRF vs. KCYS NEXRAD

1 km WRF-no routing:
Init. July 28 12z

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Case Study: 1997 Ft. Collins Flood Event

Mesoscale Analysis

Observed Analysis

1 km WRF-no routing:
Init. July 28 12z

These model results are not consistent with rainfall accumulation figures. Are we sure they are correct?

NCAR-Research Applications Laboratory

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Case Study: 1997 Ft. Collins Flood Event

Mesoscale Analysis

1 km WRF-w/out routing:
Init. July 27 12z

1 km WRF-w/ routing:
Init. July 27 12z

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Case Study: 1997 Ft. Collins Flood Event

Mesoscale Analysis

1 km WRF-w/out routing: Init. July 27 12z

1 km WRF-w/ routing: Init. July 27 12z

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Case Study: 1997 Ft. Collins Flood Event

Mesoscale Analysis

1 km WRF-w/out routing:
Init. July 27 12z

1 km WRF-w/ routing:
Init. July 27 12z

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Case Study: 1997 Ft. Collins Flood Event

Mesoscale Analysis

1 km WRF-w/out routing:
Init. July 27 12z

Latent heat flux at the surface
W/m²

1 km WRF-w/ routing:
Init. July 27 12z

Latent heat flux at the surface
W/m²

Gochis et al., 8th Annual WRF User’s Workshop, June 14, 2007
Concluding thoughts and future activities:

- Need to complete control/spin-up runs for the hydrological model for Ft. Collins event:
 - David Yates is working on radar derived precip using MDV, working through some projection issues
 - Several unresolved issues related to estimation of precip. rates from Stage III radar data
 - Nowcast runs will follow directly
 - Stream/reservoir network over this large region needs to be completed

- Much work remains in analyzing the thermodynamic forcing of convection and precipitation in WRF runs:
 - Inclusion of routing component in Noah-WRF appears to have significant effect on low-level circulation and precipitation. Need to determine exactly why.

- Continued benchmarking and case studies of coupled system to proceed this summer
 - Will likely look at May 29th 2007 event which resulted in widespread street flooding in Denver
 - Need to determine computational needs for operational work to initiate during Spring of 2008