Development of a prototype flash-flood prediction system for the Colorado Front Rang using the coupled WRF/Noah-Distributed Hydrometeorological Prediction System

David J .Gochis, David N. Yates, and Wei Yu, Fei Chen

National Center for Atmospheric Research Research Applications Laboratory

8th Annual WRF User's Workshop, June 14, 2007

Critical needs and challenges for improved flash flood prediction

- USGS/FEMA Reports: Significant annual losses of life and property
- Spatial and temporal scale of flood generation processes and impacts necessitate very highly-resolved systems
- Regions of complex terrain can be particularly vulnerable due rapid collection and transport of flood waters in catchments
- The (growing) urban landscape also imparts significant challenges to traditional watershed modeling approaches
- Many events exhibit low predictability thus necessitating probabilistic approaches

8th Annual WRF User's Workshop, June 14, 2007

Photo courtesy: Cornerstones Community Partnerships

The hydrologically-enhanced Noahdistributed Land Surface Model

(Gochis and Chen, 2003, NCAR Tech Note)

Coupled and Uncoupled Modeling Strategy:

National Center for Atmospheric Research

Current applications and deployments:

Santee River Basin, SC, USA (land-falling Tropical storms)

Walnut River Basin, KS, USA (land-atmosphere coupling) North American monsoon, Mex. (monsoon hydrology)

American River Basin, CA, USA (snowmelt hydrology)

Gochis et al., 8th Annual WRF User's Workshop, June 14, 2007

Romanian operational hydrologic modeling

Coupled WRF-Hydro Flash Flood Forecasting in the Colorado Front Range:

- WRF Model Options
 - No convection parameterization
 - Purdue/Lin 6-class microphysics
 - RRTM LW, Dudhia SW
 - Yonsei PBL, M-O sfc lyr
 - Noah land surface model
 w/ and w/out coupled
 Noah-distributed routing
 - Various initialization times

Gochis et al., 8th Annual WRF User's Workshop, June 14, 2007

4 km and 1 km WRF Domains

Coupled WRF-Hydro Flash Flood Forecasting in the Colorado Front Range:

- Noah-distributed specifications:
 - 1 km Noah grid w/ 100m explicit terrain routing
 - NHDPlus 100m terrain
 - Trained stream network delineation based on NHDPlus 'blue-lines'
 - STATSGO 1km soils
 - USGS 1km land cover

Case Study: 1997 Ft. Collins Flood

Event (see Peterson et al. 1997 BAMS)

- July 28-29, 1997
- Max. accumulations > 10 in. (250 mm) in 6 hrs.
- 5 fatalities
- Over \$200M in damages
- Warm season quasistationary convective event

Accum. Precip. (in): 1730-2300 MDT Jul. 29, 1997

Case Study: 1997 Ft. Collins Flood

Event

4 km WRF

Case Study: 1997 Ft. Collins Flood

Case Study: 1997 Ft. Collins Flood

Case Study: 1997 Ft. Collins Flood

Event Mesoscale Analysis

1 km WRF-w/out routing: Init. July 27 12z

1 km WRF-w/ routing: Init. July 27 12z

Case Study: 1997 Ft. Collins Flood

Event Mesoscale Analysis

1 km WRF-w/out routing: Init. July 27 12z

1 km WRF-w/ routing: Init. July 27 12z

Gochis et al., 8th Annual WRF User's Workshop, June 14, 2007

Case Study: 1997 Ft. Collins Flood

Event Mesoscale Analysis

1 km WRF-w/out routing: Init. July 27 12z

1 km WRF-w/ routing: Init. July 27 12z

Cross-Section Orientation

200

80

240

10

Reference Vector

Gochis et al., 8th Annual WRF User's Workshop, June 14, 2007

Case Study: 1997 Ft. Collins Flood

Event Accumulated Precipitation

WRF vs. Rain Guages

1 km WRF-no routing: Init. July 27 12z

WRF vs. Rain Guages

1 km WRF-with routing: Init. July 27 12z

Case Study: 1997 Ft. Collins Flood

Event Mesoscale Analysis

1 km WRF-w/out routing: Init. July 27 12z

1 km WRF-w/ routing: Init. July 27 12z

Case Study: 1997 Ft. Collins Flood

Case Study: 1997 Ft. Collins Flood

Event Mesoscale Analysis

1 km WRF-w/out routing: Init. July 27 12z

1 km WRF-w/ routing: Init. July 27 12z

Gochis et al., 8th Annual WRF User's Workshop, June 14, 2007

Case Study: 1997 Ft. Collins Flood

Event Hydrological Model Results

1 km WRF-w routing: Terrain Heights (m)

1 km WRF-w routing: Init. July 15 0z - Top Layer Surface water Depth (mm)

1 km WRF-w routing: Init. July 15 0z -Accum. Stream Inflow (mm)

Concluding thoughts and future activities:

- Much work remains in analyzing the thermodynamic forcing of convection and precipitation in WRF runs:
 - Inclusion of routing component in Noah-WRF appears to have surprisingly significant effect Jul. 28-29 storm events
 - Early, intense, terrain convection in routing model case produces precipitation regime more like that observed over flooding domain
 - Significant interaction with propagating convection in the Denver area
- Need to complete control/spin-up runs for the hydrological model for Ft. Collins event:
 - Several unresolved issues related to estimation of precip. rates from Stage II radar data
 - Nowcast runs will follow directly
 - Stream/reservoir network over this large region needs to be completed for channel routing

The end: gochis@rap.ucar.edu

Romanian Operational Hydrological Modeling:

- DEStructive WATers
 Abatement Program
- World Bank funded project to support Romania's application to EU
- NCAR tasked to provide modeling support to Baron AMS and NASA-LIS team
- Implementation and realtime forecasts began Oct. 1, 2006

Framework for Hydrometeorological Prediction System Development

1. Obtain and Process Meteorological Forcing Data

Observed Met. Forcing

Precipitation Temperature Humidity Radiation Wind Pressure

2. Land Data Assimilation Cycling

Drive 'Offline' Land Surface Model NCAR-HRLDAS/ NASA-LIS 3. Weather and Climate Model Initialization

Emergency Management Decision Support Systems

5. Post-process data within Decision Support Systems

4. Generatation of Coupled Hydrometeorological Forecasts

Coupled WRF-Hydro Flash Flood Forecasting in the Colorado Front Range:

4 km and 1 km WRF Domains

USGS NHDPlus terrain

Gochis et al., 8th Annual WRF User's Workshop, June 14, 2007

Case Study: 1997 Ft. Collins Flood Event

Accumulated Precipitation

Ft. Collins rain gauge locations

Spring Creek radar coverage

Case Study: 1997 Ft. Collins Flood

Event Accumulated Precipitation

1 km WRF-no routing: Init. July 27 12z

Case Study: 1997 Ft. Collins Flood

Event Accumulated Precipitation

WRF vs. Rain Guages

WRF vs. CHILL

1 km WRF-with routing: Init. July 27 12z

Case Study: 1997 Ft. Collins Flood

Event Accumulated Precipitation

WRF vs. Rain Guages

WRF vs. CHILL

WRF vs. KCYS NEXRAD

1 km WRF-no routing: Init. July 28 06z

Case Study: 1997 Ft. Collins Flood

Event Accumulated Precipitation

1 km WRF-no routing: Init. July 28 12z

Case Study: 1997 Ft. Collins Flood

Event Mesoscale Analysis

Observed Analysis

1 km WRF-no routing: Init. July 28 12z

Case Study: 1997 Ft. Collins Flood

Event Mesoscale Analysis

1 km WRF-w/out routing: Init. July 27 12z

1 km WRF-w/ routing: Init. July 27 12z

Case Study: 1997 Ft. Collins Flood

Event Mesoscale Analysis

1 km WRF-w/out routing: Init. July 27 12z

1 km WRF-w/ routing: Init. July 27 12z

Gochis et al., 8th Annual WRF User's Workshop, June 14, 2007

Case Study: 1997 Ft. Collins Flood

Event Mesoscale Analysis

1 km WRF-w/out routing: Init. July 27 12z

1 km WRF-w/ routing: Init. July 27 12z

Case Study: 1997 Ft. Collins Flood

Event Mesoscale Analysis

1 km WRF-w/out routing: Init. July 27 12z

1 km WRF-w/ routing: Init. July 27 12z

Gochis et al., 8th Annual WRF User's Workshop, June 14, 2007

Concluding thoughts and future activities:

- Need to complete control/spin-up runs for the hydrological model for Ft. Collins event:
 - David Yates is working on radar derived precip using MDV, working through some projection issues
 - Several unresolved issues related to estimation of precip. rates from Stage III radar data
 - Nowcast runs will follow directly
 - Stream/reservior network over this large region needs to be completed
- Much work remains in analyzing the thermodynamic forcing of convection and precipitation in WRF runs:
 - Inclusion of routing component in Noah-WRF appears to have significant effect on low-level circulation and precipitation. Need to determine exactly why.
- Continued benchmarking and case studies of coupled system to proceed this summer
 - Will likely look at May 29th 2007 event which resulted in widespread street flooding in Denver
 - Need to determine computational needs for operational work to initiate during Spring of 2008