\ V3N

noaaresearch
Pa Y Ya Ya Ve Vo Vo Vo Vo
Introduction

One of the challenges of modeling and simulating weather and climate phenomena is
the onerous process of running the various codes that are required to carry out a
simulation. There are several factors that contribute to this difficulty.

« An end-to-end run of a simulation often requires running a large number of
components.

« The simulation components can have complex interdependencies and runtime
requirements.

. Simulations that run in real time must complete before the resulting forecasts become
Irrelevant.

« Many experiments require 100's or even 1000's of end-to-end runs.

. High Performance Computing systems are notoriously difficult to use and are not
always reliable.

« Monitoring and tracking simulation progress iIs labor intensive and prone to error.

« Ad hoc scripting methods for end-to-end simulation orchestration are not feasible.

A Conceptual View of a Realistic
Complex Large-Scale Workflow

NAM SST RUC
Ungrib Ungrib Ungrib
Metgrid ARW Metgrid NMM
Real NMM Real NMM

v : : v

WRF ARW|—> “;rF';‘U\‘,t wrfout 4—‘WRF NMM

T 1

|NCEP Post ARW ||| | NCEP Post NMM J
Only for the N l 1 i Only for the
initial time initial time
Bucket ARW| | Bucket NMM

Interpolation Interpolation

I| ARW ip NMM g I|

Plots ARW]||| Plots NMM| |

NCEP QPF C NCEP QPF

Verification Verification
ARV Plots ARW-NMM L NMM

!

Archival

NCEP Upper Air
Verification
NMM

NCEP Upper Air
Verification
ARW

For a 48 hour forecast, with output every three hours,
this workflow would consist of a total of 182 tasks.

Task Count|Task Type Description

5 WPS Tasks Three ungrib tasks, plus one metgrid tasks for each core

4 WREF Tasks One real task and one WREF task for each core

34 Post Tasks One post task per output time for each core

32 Bucket Tasks One bucket task per output time, excluding the initial time, for each core

34 Interpolation Tasks/One interpolation task per output time for each core

51 Plotting Tasks One plotting task per output time for each core, plus one difference plotting task per output time
4 Verification Tasks |One verification task per verification type for each core

] Archival Task One archival task to archivel workflow output

A Workflow Management System for
Automated Weather and Climate Simulations

Christopher W Harrop'-?, Ligia Bernardet'4,

Mark Govett!, Jeff S Smith'?, Stephen Weygandt®

NOAA - Earth System Research Laboratory - Global Systems Division’,
Cooperative Institute for Research in Environmental Sciences?,
Cooperative Institute for Research in the Atmosphere®,

Systems Research Group*
Workflow Management System Solution

Definition: A Scientific Workflow Management System |s software that helps scientists
compose scientific workflows and automate their execution.

Definition: A scientific workflow Is a collection of data and computational tasks along
with a description of their interrelationships and runtime requirements.

A workflow management system provides scientists with two key functions:
1. @ mechanism for composing workflows; and
2. an engine for managing workflow execution.

Composing Workflows

We have devised a custom XML-based [anguage for composing workflows. The [anguage
IS simple, non-esoteric, and uses terms meaningful to most scientists. It consists of a set
of “tags” that are used to describe workflow structure. Scientists use an editor to arrange
the tags and set the tags' attributes to define the structure of their particular workflow.

The workflow tag contains all other tags and
defines overall workflow attributes

<7?uml version="1.0"%>

<workflow realtime="F">

<logrworkfleow <eycle ¥/ »<doyole mf »<cycle df><cycle H/». log</logk

The log tag defines the path of the workflow
manager's log file

<cycle»2007 5 11 12 0 0</cyclex

<task id="wrf arw" action="wrf.ksh" throttle="3" tries="3">
cpropertys The cycle tag defines the set of cycles to run
<name>-A</name>
<value>wrf-dte</value
</ property>
<propertys
<name>-pe</ name>
<valuerwconp l</valus>
</ property>

The task tag defines task attributes and contains
tags for defining the task's runtime properties,
execution environment settings, and dependencies

<environment>
<name>3TART TIME</name>

<valuex<cycle Y/><cycle m/»<cycle d/><cycle H/»</value>
</environmen t >

The property tag defines runtime properties

<environment>

<name>FC8T LENGTH</name>

<value>&FCET LENGTH;</valuel
</envirommen T

The environment tag defines execution
environmental settings

<dependency>
<taskdep task="real arw"/>
</ dependency>

The dependency tag defines a task's dependencies

</task>

< workflows

The Workflow Management Engine

The Workflow Manager has a layered, object-oriented architecture. Layers communicate
with each other via standard interfaces. Support for additional batch systems Is achieved
by implementing a new batch system class in the Batch System Layer.

Workflow XML Document

The workflow XML document is prepared by the scientist
using his or her editor of choice.

<?mml version="1.0"72>

<workflow rea ltime="T">
<cycle»2007 5 11 12 0 0</cycle>
<task id="wrf arw’>

</ task>

</workftlows

Parses the XML workflow document, instantiates Task,
Cycle, Batch System, and other objects, maintains a list of
active cycles, runs the workflow by invoking each Task
object's run method for each active cycle

Workflow Layer

Maintains Task state, reruns failed tasks, runs tasks by
Instantiating Job objects to do the tasks' actual work, and
Invokes Job object methods to manipulate and query the
status of batch jobs

Task Layer

Maintains Job state, invokes Batch System object
methods to submit, query, and cancel batch jobs

Job Layer

Batch System Layer

Executes the actual batch system commands that submit,
qguery, and cancel batch jobs

The Workflow Manager submits jobs to the HPC
system. Once submitted, the batch system on the
supercomputer Is solely responsible for
scheduling the jobs. The Workflow Manager can
submit, monitor, and cancel jobs, but it relies on
the underlying batch queuing system to schedule
their execution.

Systems Research Group f

Using the Workflow Manager
The Algorithm

The workflow manager implements the algorithm depicted below. Each time it runs, it
detects task failures and newly satisfied task dependencies and starts or reruns tasks
accordingly. Thus, repeated Invocations (usually as a cron job) of the workflow
manager make incremental progress until the workflow I1s complete. The current state
of the workflow is maintained in permanent storage between runs, and each run usually

finishes in a few seconds.
Activate new For each Cycle

a8 anz AML No Get last known
modified? workflow state

Yes

Read XML
file

Did any Yes
N\
No Rerun
Task

Newly
satisfied task
Jependenciesy

No Save workflow
state

Command Line Usage:

S workflowmgr.rb —-—-xml=/path/to/xmlfile —--store=/path/to/statefile

Crontab Usage:

*/2 * & * * workflowmgr.rb —-—-xml=/path/to/xmlfile —-—-store=/path/to/workflow/statefile

A Core Component of WRF Portal

Our workflow manager also provides core functionality for WRF Portal. WRF Portal is a
Java application that simplifies model testing an evaluation by providing modelers with
an intuitive graphical user interface for composing, running, and monitoring workflows.
Using WRF Portal, scientists can easily create, organize, and track large numbers of
model configurations, model runs, and visualize the results. The diagram below shows
how the workflow manager is used by WRF Portal to coordinate the execution of
simulation components.

ore Cycles
or Tasks to
Process?

HPC System

Workflow

Manager
Processes

Practical Experience

Our workflow manager is designed to solve the practical simulation management
problems that scientists face on a daily basis. This means we focus on solving the
problems that scientists encounter during their real-world modeling experiences rather
than focusing only on “grand challenge” applications. As a result of this philosophy, our
system has played a key role in the success of several real-world modeling applications.
Below Is a list of some recent experiments that made use of our workflow manager.

Experiment Name Type
WREF Test Plan Retrospective
WRF Rapid Refresh Core Test Retrospective

DTC Winter Forecasting Experiment (DWFE) |[Realtime

NMM5-CONUS Realtime
Terrain-induced Rotor Experiment (T-REX) |Retrospective & Realtime
Rapid Refresh Development Realtime

Rapid Update Cycle Benchmark Retrospective & Realtime

Conclusions

« The success of our system has been demonstrated by its practical use in several real-
world experiments

« A focus on solving dally practical issues results in a greater amount of “buy In” by the
end-user scientists

« Many scientists now consider our system to be a crucial tool for conducting their
experiments

. Our system has dramatically increased the reliability and efficiency of several
experiments

. We have plans to make the following improvement

» Add workflow language constructs to make it easier to create and maintain a large number of nearly
Identical tasks

» Add quality of service workflow language constructs to enable the specification of start and end deadlines
for real-time task execution

» Generalize task runtime property specification to allow workflow documents to be portable across different
batch systems

» Implement the capability to “roll back™ a workflow so that a scientist can make changes and rerun tasks that
have already completed successfully (currently it is only possible to rerun tasks that have failed).

