Commercial Implementation of WRF with Efficient Computing and Advanced Data Assimilation

Brent Shaw*, Richard Carpenter, Phillip Spencer, and Zach DuFran
Weather Decision Technologies, Inc.
Norman, OK
*bshaw@wdtinc.com
Motivation

• Dubai International Airport Project
 – Incorporate WRF in the Aviation Weather Decision Support System (AWDSS)
 – Need for an operationally reliable turn-key system that can run without an on-site NWP expert
 – Incorporation of data assimilation and rapid refresh

• Refresh of WDT’s internal infrastructure
 – Replacement of older WRF+ADAS system
 – Hardware nearing end-of-life

• Develop a shared code base for deployable and internal WRF-based systems
System Components

• Public WRF Components
 – WRF Domain Wizard
 – WPS
 – WRF-Var
 – WRF-ARW Version 2.2.1 with FDDA
 – WRF Post Processor (from WRF-NMM Distribution)

• WDT Components
 – WRFControl Package
 – WRF Management Portal
 – Custom Post-Processing and Plotting

• High-Performance Linux Cluster
 – Built and managed with ROCKS, using Sun Grid Engine (SGE) for job control and Ganglia for system monitoring
AWDSS WRF Integration

3DVAR+FDDA Assimilation

WRF NWP Model

Post-Processing

AWDSS Observations

Satellite

Radiometer

Wind Profiler

Radar

Sfc Obs

WRFControl System

Profiles

Grids/Profiles

Nowcast Product Generator
Detection and Nowcasting Algorithms (Fog, inversion, turbulence, LLWS, etc.)

Operational User Interface
Data Assimilation: 3DVAR+FDDA Initialization

- **COLD**
 - Initialized from GFS forecast at 12Z
- **3DVAR**
 - 3DVAR analysis from GFS forecast + obs
- **FDDA**
 - 3-h Forecast initialized at T-3 with GFS, nudged with obs
- **3DVAR+FDDA**
 - Initialized with 3DVAR at T-3, FDDA from T-3 to T

Comparison of 1200Z, 24 Sep 2007 WRF Initialization
2 m Dewpoint Temperature
11-h Forecast of Valid 2300Z/24 Sep 2007
Total Precipitation from 2200-2300Z

Radar/IR Satellite at 2300Z
Data Assimilation Issues

- Cycling of 3DVAR Problematic
- Numerous Data Formats
- Observation QC in FDDA
- Availability of Documentation
 - I/O Formats
 - Obs. Types and Usage
 - GenBE Code

NEXRAD Composite
VT: 2007/09/18 1258Z

WRF 1-h Forecast (Warm Initialization)
VT: 2007/09/18 1300Z

WRF 1-h Forecast (Cold Initialization)
VT: 2007/09/18 1300Z
Computational System

• **Linux Cluster**
 – 2 dual-core AMD Opteron CPUs per node
 – 8 GB RAM per node
 – Dual power supplies
 – High-availability network attached storage

• **ROCKS Cluster Software**
 – Built with Red Hat Linux
 – Sun Grid Engine (SGE) Job Management
 – Ganglia Web Monitor

• **PGI Fortran and Gnu C Compilers**

• **Functional Partitioning for Reliability**
 – Primary/backup headnode
 – Separate queues for serial vs. parallel jobs

• **No single point of failure**
Optimizing Parallel WRF Performance
System Tuning on Small Clusters without Interconnect

Execution Performance Ratio (Excludes I/O Steps)

Key Results

- Decomposition matters!
- MPICH2 better than MPICH1
- OpenMPI may be even better
- Multi-core systems present new challenges

NOTE: All issues above are mitigated if high-speed interconnect is used!
Optimizing Parallel WRF Performance

Decomposition Tuning via NPROC_X and NPROC_Y

<table>
<thead>
<tr>
<th>NPROC_X</th>
<th>NPROC_Y</th>
<th>Inter-node Interfaces</th>
<th>Performance Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>30</td>
<td>25.0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>12</td>
<td>27.6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>24</td>
<td>31.8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>29.4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>24</td>
<td>33.4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>33.4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>33.4</td>
</tr>
</tbody>
</table>
Operationalization

• Efficiency
 – Computational system optimizations
 – Separation/parallelization of WPS ungrib process

• Reliability
 – Elimination of single failure points
 • Enterprise-class servers and OS
 • Dual head nodes using SGE “shadow master”
 • Extra compute nodes
 • NetApp file server
 – Fault tolerance
 • Handling of missing data, 3DVAR problems, etc.
 • Dynamic resource allocation via SGE to handle failed servers
 • Configurable e-mail alerting levels

• Usability
 – Turn-key system with flexible user configuration options
 – Web-based WRF Management Portal
 – Standardized output formats for easy integration into operations
Configure Domains

Domain Wizard

Summary of Configured Domains
After adding, entries appear on schedule.
Post-Processing and Integration
Future Plans

• WDT Internal System Implementation
 – Hourly update CONUS 0-9 h forecast (10 km)
 – 6-hourly CONUS 0-72 h forecast (10 km)
 – 6-hourly Europe 0-72 h forecast (10 km)
• Test and upgrade to WRF v3.0
• Radiance and Radar Assimilation
• Address Cycling (Digital Filter?)
• Automate 3DVAR GenBE
• New Post-processing (GRIB-2)
• Deliverable Systems
Community Recommendations

• Add/Improve Documentation
 – I/O Format Specifications for 3DVAR & FDDA
 – Explanation of observation usage/limitations
 – Optimizing

• Continue Software Architecture Improvements
 – Liberal use of inline comments
 – Integration of related software packages
 – Other decomposition options?