Idealized Modeling of the Role of Stability and Shear on Mesoscale Gravity Wave Evolution

Michelle Pitcel * Brian Jewett * Bob Rauber * Greg McFarquhar *

What is a Mesoscale Gravity Wave (MGW)
- Correlated pressure wind perturbations often found behind a Mesoscale Convective System (MCS)
- MGWs can cause damaging winds and intense precipitation
- MGWs can be very long lived and travel several hundred kilometers

Modeling MGWs
- Using WRF version 3.2.1 and NCSA/LEAD workflow broker system
- Evaporative cooling is simulated using an imposed cold thermal
- Model domain is (x*y*z)=(83*83*7km)
- In the model example images
 - Cold thermal is falling at 5min
 - Wave is at max activity at 25min

Goals
- Explore the relationship between the following variables
 - Lapse rate within the stable layer
 - Temperature of the imposed cooling aloft
 - Vertical U-wind speed shear
- To the following characteristics of MGW intensity
 - High and positive correlation between U-wind perturbation (U') and pressure perturbation (P')
 - Increased temperature immediately following lower pressure
- Strength of surface winds in vicinity of large pressure changes

Acknowledgements
- NSF Grant ATM-0438244
- The National Center for Supercomputing Applications (NCSA) at UI of I
- The Department of Atmospheric Sciences at UI of I

Summary of Current and Future Work
- Current Work
 - 500 runs completed
 - Analysis code written to process data and results from each WRF simulation
 - What we know now about variable dependence for strong MGW cases
 - 1.0°C thermal combined with larger H1 and γ, and smaller H2 and γ, and δ
 - Results in larger negative U' and P'
 - Thermal appears to be the most important, followed by the lapse rate and heights

<table>
<thead>
<tr>
<th>MGW</th>
<th>Thermal</th>
<th>H1</th>
<th>H2</th>
<th>H3</th>
<th>r</th>
<th>min u'</th>
<th>min P'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>-10</td>
<td>1250</td>
<td>5150</td>
<td>7250</td>
<td>6</td>
<td>0.89</td>
<td>-4.086</td>
</tr>
<tr>
<td>Weak</td>
<td>-3</td>
<td>250</td>
<td>6</td>
<td>3750</td>
<td>8</td>
<td>0.94</td>
<td>-0.839</td>
</tr>
</tbody>
</table>

- Future Work
 - Complete all runs
 - Create Regime Diagrams to relate shear, stability, and cooling with MGW activity
 - Substitute a constant cold source for the cold thermal
 - Examine MGW response for the thermal versus a constant cold source