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ABSTRACT

The structure of the analysis increments in a variational data assimilation scheme is strongly driven
by the formulation of the background error covariance matrix, especially in data-sparse areas such as
the Antarctic region. The grid-point modeling in this studymakes use of regression-based balance
operators between variables, empirical orthogonal function decomposition to define the vertical
correlations and high order efficient recursive filters to impose horizontal correlations. A particularity
is that the regression operator and the recursive filters have been made spatially inhomogeneous. The
computation of the background error statistics is performed with the Weather Research and Forecast
(WRF) model from a set of forecast differences. The mesoscale limited area domain of interest covers
the Antarctica, where the inhomogeneity of background errors are expected to be important due to the
particular orography, physics, and contrast between ice, land and sea.

1. Introduction

Producing accurate forecasts over the Antarctic con-
tinent is a challenge because of the sparsity of available
conventional observations and the difficulties encountered
in resolving the effect of the steep topography over the
atmospheric flow. It also may be necessary to include a
special representation of the physical properties unique to
the Antarctic troposphere. The continental boundary layer
shows unusual persistent strong winds, that can be partly
explained through the katabatic wind theory (Ball 1956;
Pettré et al. 1990; Parish and Cassano 2003). These sur-
face winds probably induce larger scale convergence in the
troposphere (King and Turner 1997).

The Antarctic Mesoscale Prediction System (AMPS;
Powers et al. (2003)) has been designed to overcome the
difficulties in numerical weather modeling at the poles.
AMPS is based on a modified “polar” version of the
fifth-generation Pennsylvania State University - National
Center for Atmospheric Research numerical Mesoscale
Model (MM5). Although developed originally with MM5,
AMPS now uses the WRF model (Skamarock et al. 2008)).
First guess and lateral boundary conditions are derived
from the Global Forecasting System (GFS) developed at

the National Center for Environmental Prediction (NCEP).
AMPS has been shown to provide relevant meteorological
guidance for the forecasting in the Antarctic region over
the last few years (Powers et al. 2003). It has been success-
fully used to study the prediction of some severe synop-
tic events such as the May 2004 McMurdo storm (Powers
2007; Steinhoff et al. 2008). The AMPS modeling system
features currently six grids of various horizontal spacing
ranging from 45 to 1.6 km. Specific initialization through
data assimilation is only performed for the two largest do-
mains, shown in Fig. 1. The first domain extends up to
New Zealand, to cover meteorological conditions for the
flights towards McMurdo (Powers et al. 2003), and has
currently 45 km resolution. The second domain covers the
whole Antarctic continent with an improved spatial reso-
lution of 15 km. Other domains include local areas near
the Ross Ice shelf and McMurdo, or near the South Pole
around Amundsen-Scott (Powers et al. 2003).

The accurate specification of the model initial state is
especially important when the sensitivity of the prediction
to this initial state is found to be high (Xiao et al. 2008).
This can be achieve through advanced data assimilation
schemes that are able to cope with the special properties
of background errors over Antarctica, and that are related
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to the sparsity of observations and the physical properties
briefly described above. Two main schemes are available
for the AMPS model, namely an ensemble square root fil-
ter (Barker 2005) and a three-dimensional variational as-
similation (Barker et al. 2004). In this latter case, error
covariances are typically based on offline computations of
simplified statistics. The background error samples are of-
ten approximated through forecast differences (Parrish and
Derber 1992), or data assimilation ensembles with per-
turbed observations (Pereira and Berre 2006). The spec-
ification of the background error covariance matrixB is
modeled as a sequence of operators using control variable
transforms (CVT) (Derber and Bouttier 1999). This is has
several advantages in addition to reducing the dimension
of B, namely ensuring physical balance constraints and
improving the conditioning of the minimization (Courtier
and Talagrand 1990).

The goal of this paper is to extend the currently homo-
geneous WRF scheme to an inhomogeneous formulation
in order to make benefit of the grid space formulation of
the CVT (Barker et al. 2004). Inhomogeneity in the hor-
izontal correlations is incorporated through the use of in-
homogeneous recursive filters Purser et al. (2003). This
is illustrated with computations of the background error
statistics over the Antarctica.

2. Background error modeling in WRF

a. The Control Variable Transform in 3D-Var

In general, variational assimilation schemes are de-
signed to provide an analysisxa that minimizes a cost
functionJ(x):

xa = Arg min J (1)
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where, denoting byn the dimension ofx and byp the di-
mension of the vector of observationsy:

• H is the non-linear observation operator;

• H of dimensionsp× n is the linearized observation
operator;

• B of dimensionsn × n is the background error co-
variance matrix;

• R of dimensionsp × p is the observation error co-
variance matrix.

The analysis is a weighted average of the background and
of the observations, and the weights depend on the covari-
ances of their respective errors. The specification ofB is
achieved through the change of variable (CVT)

v = B1/2χ (4)

The choice made for the WRF 3D-Var (Barker et al.
2004) was adapted from the UK-MetOffice Control Vari-
able Transform (Lorenc et al. 2000) but the horizontal cor-
relations were prescribed through homogeneous recursive
filters (Hayden and Purser 1995) rather than through a
spectral space decomposition. Our update over the formu-
lation of Barker et al. (2004) includes the multiplication of
a variance rescaling factor and the use of spatially inho-
mogeneous recursive filters following Purser et al. (2003).
The new CVT may be written

v = UpUvUihSχ (5)

whereS is a multiplicative variance scaling factor,Uih

is the application of high order, fully inhomogeneous re-
cursive filters to impose horizontal correlations,Uv is the
application of vertical correlations through EOF andUp

changes the control variables to model variables through
physical relationships.

3. Background error statistics over the Antarctica

a. Methodology

The development of an advanced background matrix
aims to better represent the features of errors. The Antarc-
tic region provides a challenging environment to design
and test new data assimilation techniques (Barker et al.
2004) owing to the sparsity of available observations and
to the unusual atmospheric processes occurring (King and
Turner 1997). The study of background errors has drawn
considerable attention in the community, given the usually
large impact that their representation have on NWP perfor-
mance. Few studies have been devoted to the examination
of background error covariances over the Antarctic region.
However, the covariances are expected to be specific in
this region. For instance, using a global model, Ingleby
(2001) reported also a change a sign in the large-scale
cross-covariance between temperature and surface pres-
sure. As in Berre (2000), vertical cross-covariances can be
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computed to infer some physical meaning of the balance
relationships. Their statistical significance can be inferred
from the explained ratio of variance, obtained through co-
variances between unbalanced and total variables.

b. Inhomogeneous balance operators: an illustration

The second 15-km resolution AMPS domain is used
to compute the balance operators. As a first step, the inho-
mogeneity of the balance will be shown by computing the
statistics with geographical masks. The inner AMPS do-
main (Fig. 1) is split between the oceanic and continental
parts to look for possible differences. The coupling be-
tween temperature and streamfunction and unbalanced ve-
locity potential is depicted in Fig. 2. The geostrophic cou-
pling (panels a and b) is very similar in the troposphere,
but of opposite sign in the boundary layer. This can be
explained through temperature inversions. Differences be-
tween temperature and unbalanced velocity potential are
even more striking. The low level covariance maximum at
the surface over Land might be linked with the frequent oc-
currence of katabatic winds, whose strength is linked with
temperature and topography.

c. Standard deviations

Background error standard deviations (or variances)
seem clearly linked with the circulation of synoptic sys-
tems on the seas around the continent, and are heavily in-
fluenced by the contrast between seas and land. For small
scale variables (unbalanced temperature and humidity), an
increase of variance along the boundary of domain 2 is
sometimes visible in domain 1, as a consequence of nest-
ing (not shown). For streamfunction, an increase of vari-
ance can be seen towards the circumpolar vortex (panel
a in Fig. 3). Humidity shows lower variance over the
Antarctic plateau (panel d). Unbalanced velocity poten-
tial and unbalanced temperature rather exhibit opposite be-
havior with increased variance over the Antarctic plateau
(panels b and c). For all variables, there seem to be a sig-
nificant reduction of the variance towards the border that is
linked with the larger scale common boundary conditions
from the lagged NMC method (Pereira and Berre 2006).

d. Horizontal lengthscales

Horizontal lengthscales are a simple diagnostic of the
often complicated shape of real background error correla-
tion functions. They are mostly estimated through simple

local formulas (Pannekoucke et al. 2008). This simplifica-
tion can make it doubtful whether such simple estimates
can be used within an inhomogeneous data assimilation
scheme, but the results of the NCEP global assimilation
scheme from Wu et al. (2002) were positive. As the lat-
ter authors, we estimate the (local) lengthscales through
the ratio of the variance of a field and the variance of the
Laplacian of this field. For instance, the correlation length-
scale of streamfunction is estimatedvia:

L =

(

8
V (ψ)

V (ξ)

)1/4

(6)

whereξ is the vorticity (the Laplacian of streamfunction)
and is computed through spectral transform, taking into
account the map projection factor, andV is the variance
over time in the NMC method.

The estimates of unbalanced surface pressure error lo-
cal lengthscales for AMPS domains 1 and 2 are shown in
Fig. 4. Small scale noise is noticeable in the raw estimates
(panels a and c), consistent with the findings of Pannek-
oucke et al. (2008). There is a clear contrast between the
continent and the seas, with much larger lengthscales over
the Antarctic plateau, especially in the Eastern part. The
effect of nesting is also visible, with smaller lengthscales
at the inner boundary. Over domain 2, we can also see a
strong reduction of the lengthscale along the coastline. Itis
necessary to filter the lengthscales such that the correlation
functions keep a quasi-Gaussian shape. This allows a good
amplitude correction and lengthscales representation (Pan-
nekoucke and Massart 2008) as well as the additional con-
straint, for horizontally separable recursive filters, to keep
undesirable grid-related anisotropy to a negligible level.
The filter is done through convolution (multiplication in
spectral space) and allows the main geographic contrasts
to be represented (panels b and d).

4. Conclusion

In data sparse areas, the correct specification of the
background error covariance matrix is a key element to
spread the information retrieved from the observations.
The Antarctic region still presents some unique chal-
lenges for regional numerical weather prediction: difficul-
ties arise from poor first-guess and lateral boundary con-
dition (as global models may be tuned for mid-latitude
weather characteristics), shortage of conventional obser-
vations, steep and complex topography, and special phys-
ical conditions that prevail over the plateau. These condi-
tions may lead to inhomogeneous background covariance
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matrix, as errors are expected to be strongly driven by dy-
namics (Bouttier 1994).

We address first the issue of inhomogeneous back-
ground error modeling. This is achieved through a lo-
cal balance transform and inhomogeneous recursive filters,
which can be achieved at a reasonable cost thanks to the
WRF-Var grid point formulation. The balance uses local
regressions in grid point space such as in Wu et al. (2002).
The inhomogeneous recursive filters are based on the work
by Purser et al. (2003).

The second part of this paper describes the covari-
ances of background error over the Antarctic region for
the Antarctic Mesoscale Prediction System. Coupling in
the boundary layer is shown to differ over the plateau with
respect to over the ocean, which is believed to be due to the
frequent occurrence of temperature inversions and kata-
batic winds over the continent. Otherwise, the obtained
background error characteristics share strong similarities
with the ones computed in the mid-latitude band, namely
geostrophic coupling between temperature and stream-
function.

Variations of standard deviations are probably linked
with dynamics, including the storm tracks and synop-
tic activity over the seas around Antarctica, as well as
with boundary layer processes above the continent. We
found increased variance over the surrounding seas for un-
balanced velocity potential and relative humidity errors,
and on the contrary increased variance over the continent
for streamfunction and unbalanced temperature. Unbal-
anced surface pressure shows increased variance around
the coastlines. The diagnosed local lengthscales also ex-
hibit significant geographical variations; for instance the
surface pressure error lengthscale is multiplied by a factor
of 3 between its minimum value over seas and its maxi-
mum value over the Antarctic plateau.
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FIG. 1. AMPS domains for the 45 km resolution configuration (outer box) and the nested 15 km resolution configuration
(inner box)

6



(a) (b)

() (d)
FIG. 2. Diagnosed vertical covariances between temperature and streamfunction errors (panel a and b, units:105m2

s−2 K) and velocity potential errors (panel c and d, units:104m2 s−2 K) drawn with solid (dashed) lines for positive
(negative) values.
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(a) (b)

() (d)
FIG. 3. Rescaling factor of variance for streamfunction (EOF1,panel a), unbalanced velocity potential (EOF 2, panel b),
unbalanced temperature (EOF1, panel c) and relative humidity (EOF 1, panel d).
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(a) (b)

() (d)
FIG. 4. Local lengthscales (km) of unbalanced surface pressurebackground error for domain 1 (upper panels) and 2
(lower panels). Raw (spatially filtered) estimates are shown in left (right) panels.
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