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1. Introduction 
Particularly in regions of extreme terrain, 

timely quantitative precipitation estimates (QPE) 
during heavy rainfall/snowfall events are critical 
but difficult to obtain given instrumentation 
density and quality issues. For these situations, it 
is possible that a blend of short-term forecasts 
with observations might perform better than 
purely observational estimates. In this paper, we 
describe an example of this kind of system, one 
which applies variationally-driven ensemble 
methods to blend WRF forecasts with gage 
measurements. These methods have been 
successfully employed in attempts to assimilate 
other quantities, but their application to 
precipitation has not been fully realized. We 
apply them to a case of very heavy precipitation 
in the Northern California Sierra Nevada 
Mountains during December and January of 
2005-6. 

 
2. Background and Methodology 

The basic formulation of optimal data 
assimilation techniques assumes that information 
about the state of the weather can be given by 
quantities contained in the NWP model forecast 
and in observations. In inverse problem theory 
the information from a model and observations is 
combined by a conjunction of the Gaussian 
probability density functions (pdf’s) resulting in 
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a new, joint posterior pdf. This conjunction can 
be expressed as 
(1) ( )),(exp~ yxJp aposterior −                                                               

where ax  and y  are modeled and measured 
stochastic Gaussian quantities, respectively,  and  
J  is the well known cost function (Kalnay, 
2004), which we define as 
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In this initial work we have assumed that log 

x is normally distributed. Thus in our 
application, ax  is the analysis state vector 
containing the log of all precipitation estimates 
on the analysis grid,  iy  is the log of observation 

of type i , and )( ai xh  is the transformation 
from the analysis state space into observation 
space, or “observational network operator”. 1−

iyR  
is the inverse covariance matrix of logged 
observational errors for each observation type, 

bx  is the log of the background precipitation 
vector of the same length (would be some 
deterministic estimate of precipitation from a 
model) as the analysis precipitation vector, and 

1−
fP  is the inverse covariance matrix of the 

logged background precipitation errors derived 
from the 3-km ensemble. This matrix is the focus 
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of our ensemble post processing; for a limited 
domain Pf may be fully recoverable.  

When the observational operators ih  are 
linear and are combined into one operator they 
are conveniently denoted as H. The posterior 
solution in this case is expressed respectively in 
terms of mean and covariance as:  
(3)  
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Background error covariances are 

determined using a hybrid scheme that involves 
a linear combination of both time-dependent 
(climatological) and time-independent (ensemble 
forecast-based) covariances. The relative 
influence of the two are determined via the 
settable coefficient alpha in the equation  

 
(4)   Pf  = a Pc + (1-a) Pe 

     
where Pc  is the climatological covariance from 
many cases, described below and a  is a weight 
that goes from 0 to 1.  Pe is the ensemble derived 
covariance. Climatological covariances are 
determined from a set of 95 cases (actually 6h 
time periods) during the IOPs for the first two 
HMT-ARB field exercises in 2005-6 and 2006-7.  
 

For model forecast input, we have used a set 
of time-lagged multi-model ensembles for 
NOAA-HMT forecast applications (Yuan et al. 
2008a).  The time-lagged ensemble members in 
these runs are generated from a set of WRF-
based forecasts initialized every 6-hours using 
NOAA-LAPS (Albers et al. 1996), and evaluated 
at the same forecast projection time.  Only the 
closest 3 lagged ensembles are used in order to 
avoid large error contamination due to longer 
model integrations.  Because this limited 
ensemble size can cause serious rank-deficiency 
problems in the retrieved background error 
covariance matrix, a combination of time-lagged 
ensembles with a set of mixed physics ensembles 
are used to increase the ensemble size (Yuan et 
al. 2008b). The mixed physics ensemble 
consisted of simulations performed by using 
Weather Research and Forecasting (WRF) 
numerical model with both Advanced Research 
and Forecasting (ARW) and Non-hydrostatic 
Mesoscale Model (NMM) dynamical cores. The 
following microphysical schemes were used: 
Ferrier et al. (2002), Thompson et al. (2004) and 
Schultz (1995).  

As observational input to our data 
assimilation technique, we use 6h accumulated 
precipitation at operational hourly gages 
available from the Hydrometeorological 
Automated Data System (HADS) managed by 
the Office of Hydrology of the National Weather 
Service. These data are first screened by a set of 
automated daily quality control procedures. To 
establish an independent sets of gages for 
verification purposes, we designate a set of 
verification gages for each of several separate 
analysis runs by withholding a small number (3-
5) of gages from each run. An example for a 
single 6-h period is shown on Fig. 1. This 
procedure resulted in 183 verification pairs from 
the five initial runs and the eight time periods. 
Tests showed that the resulting QPE fields were 
not greatly impacted by the small number of 
withheld gages. 
 
3.  Results from IOP 4 

Two of the five runs with withheld gages are 
shown in Fig. 1, which compare a single time 
period QPE with a gage-only analysis using 
STMAS (Xie et al. 2005). There is general 
similarity between these two runs in both the 
STMAS and QPE sets, a similarity that extends 
to the other three runs. A significant difference in 
smoothness and detail is also clearly seen 
between STMAS and the optimal QPE, which at 
this time has a striking east-west pattern. We 
propose that the difference in detail is a result of 
the good resolution of the model fields 
(unavailable to the STMAS analyses), the 
physics packages that can help build accurate 
precipitation fields, and the presence of high-
resolution terrain. Another difference between 
the two estimates is that the STMAS analyses 
seem to retain larger values over the eastern 
domain boundary (the region including Lake 
Tahoe) than the optimal QPE. 
 

While Fig. 1 displays a time period for 
which the optimal analysis performs well (at 
least qualitatively), other time periods and 
computational parameters can give worse results. 
For instance, a QPE plot during an earlier 6h 
period of IOP 4 when light general rain was 
falling over the domain (Fig. 2) exhibits large 
and apparently spurious precipitation maxima. 
Part of the problem in this case is likely traceable 
to a poor forecast; the ensemble mean is late 
getting the precipitation started, with the result 
that predicted rainfall is too small over most of 
the domain. This poor forecast in turn produces 



inaccurate error covariances and a poor optimal 
QPE field. Other factors may also be present, 
including the proper determination of weights for 
the climatological error covariances that are 
applied in the computations that lead to the QPE 
analyses, and the best selection of lag times. We 
will discuss these possibilities in more detail in 
the conclusions. Although our preliminary 
sensitivity tests have not shown this to be 

  

 
FIG. 1. Gage-only (STMAS; top row) analyses and 
optimal QPE (bottom row) for two sets of analyses of 
6h precipitation ending at 0000 UTC 12 December 
2005 in the ARB domain. Top row show locations of 
gages used in the analyses; bottom row displays gages 
withheld from analyses for later use in verification. 
Legends are in mm. 
 

 
FIG. 2. STMAS and optimal QPE analyses (top and 
middle), and WRF ensemble mean forecast (bottom) 
for 6h precipitation ending at 1200 UTC 30 December 
2005. Legends are in mm. Analyses gages are shown 
for the STMAS analysis and WRF forecast, and with-
held gages are shown for the optimal QPE analysis. 

universally true, it does appear that the optimal 
QPE computations encounter greater difficulty 
for scenarios with lighter and more general 
rainfall. 

With five sets of analyses during eight 6h 
periods, and 3-5 withheld gages for each, it is 
possible to compute quantitative statistics and 
verification scores with 183 verification gage 
precipitation observations matched with 
STMAS, optimal QPE, or ensemble forecast grid 
points. The scatter plot of Fig. 3 provides a 
general overview of the observation pairs that 
will make up these score computations. The 
forecast ensemble mean rainfall points show a 
strong tendency to appear above the one-to-one 
line of the verification observations, an 
indication of over-prediction. Both the STMAS 
and optimal QPE points generally straddle the 
line (that is, show less sign of overall bias), with 
the QPE points showing less scatter about that 
line than those for the STMAS analyses. There 
are a few QPE outliers that may account for 
some reduction in the correlation values; see for 
instance the QPE point with 50 mm precipitation 
that matches to a gage value of less than 10 mm. 
Overall, the ensemble forecast precipitation and 
the optimal QPE have correlation coefficients 
that are roughly equal, while the STMAS 
correlation is well below that of the other two. 
 

 
FIG. 3. Verification gage observations (horizontal 
axis, mm) plotted against nearest grid point values of 
STMAS gage-only analyses (red), 12-member 
ensemble mean WRF forecasts (blue) and optimal 
QPE analyses (green) for 8 6h periods during IOP 4 
(horizontal axis, mm). Spatial correlation values are 
also shown. 
 

The IOP 4 domain-averaged precipitation 
rates and error estimates of Fig. 4 reveal, first, 
that optimal QPE and STMAS are indeed not 
biased as compare to overall verification gage 
averages. WRF forecasts, on the other hand, 
show a full 6 mm large bias over this IOP. While 
the mean absolute error between the ensemble 
mean and gages, and between STMAS and 



gages, is about the same, for QPE it is 
significantly less. Similarly, the root mean 
square error for QPE is also well below that of 
STMAS or WRF forecasts. This improved 
performance for optimal QPE is reflected also in 
the equitable threat scores (ETS) of Fig. 5. For 
the range of thresholds most meaningful for this 
heavy rain event, (between 0.25 and 1.5 in), the 
QPE ETS is larger than (or in one case 
equivalent to) the other two, and occasionally is 
a full point better either of them. 

 
FIG. 4. HMT-ARB domain-average 6h rainfall (left 
bar cluster), mean absolute error (middle) and root-
mean-square error (right) for all verification pairs 
during IOP 4.The black bar indicates straight average 
including all gages in the domain; other colors are as 
indicated in the legend. 
 

 
FIG. 5. Equitable threat scores (ETS) computed at 
verifying gage locations for the analyses and forecasts 
indicated. 
 
4. Conclusions and Further Research 
 

In general, this case study demonstrates that 
combining high-resolution ensemble forecasts 
with gage data using an optimal estimation 
methodology can successfully produce high-
resolution QPE over a mountainous river basin 
that is superior to gage-only analyses (as 
measured by quantitative verification scores 
using withheld gages). However, it appears that 
occasionally bad error covariances from poor 
ensemble forecasts or other causes can result in 

spurious extreme rainfall in the QPE fields. 
These results suggest that further investigation of 
the forecast skill of ensemble forecasts is needed. 
Other important subjects for future research 
involve the specification of computational 
parameters in the optimal analysis methodology. 
For instance, sensitivity studies already 
performed demonstrate that when error 
covariances derived from scenario-specific 
model climatology are strongly weighted, the 
root mean square errors of the QPE fields are 
smaller (Fig. 12). The figure also shows that for 
low weightings, there is a dramatic dependence 
on the length of forecasts (i.e., number of lags). 
On the other hand, the QPE analysis is less 
sensitive to the inclusion of more time-lagged 
members when the model climatology weights 
are larger. More sensitivity tests of this kind are 
required before the best combination of 
parameters can be specified. Another important 
test should be the determination of the impact of 
our Gaussian assumption for the logarithm of 
precipitation amount. Subsequent analyses 
suggest that a cubed root representation would be 
more appropriate. 

 

 
FIG.6. (a): Root-mean-square errors (RMSE) during 
IOP 4 for different combinations of model time lag 
ensemble members (1-3 6h periods) and 
climatological error covariance weightings (0.1 to 
0.9; coefficient alpha in Section 3). (b): Idealized 
schematic parameter space diagram for model time 
lags and model climatology weighting. The ‘X’ 
symbols on both panels indicate the set of parameters 
used in verification computations and analyses in 
previous figures; the arrow in panel (b) indicates the 
direction in parameter space required to move toward 
improved analyses.  
 

Other future plans include extension of this 
research to other IOPs during the HMT project 
and to a larger region including more river basins 
in the 3km model domain to capture a larger 
sample set of observations. Both verification 
scores and the spectral analysis results can be 
better confirmed by this improved sampling. 
Other data sources such as radar observations 
during the HMT project can be added to the QPE 
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analysis. Possibly the inclusion of radar data can 
help confirm the validity of the small-scale 
ridge-valley circulations implied by the ensemble 
forecasts and the precipitation estimates, as well 
as by the spectral analyses. The QPE scheme will 
be examined for different ensemble 
configurations, such as combinations of various 
physics options and multiple models. With the 
present results in mind, a further question that 
can be addressed is this: If we assume a given 
QPE field is truth, is it possible to design a rain 
gage network that optimizes basin averages and 
narrows the analysis PDF in meaningful ways? 
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