WRF Software

John Michalakes, Dave Gill
Michael Duda, Julie Schramm, Laurie Carson

Mesoscale and Microscale Meteorology Division
National Center for Atmospheric Research

Developmental Testbed Center
Outline

• Version 3 software
 – Software improvements
 – New platforms & performance
 – Coupling infrastructure

• Looking Forward
 – New architectures (GPUs, Cell, etc.)
 – Successor model: MPAS
WRF Software Improvements

• New data structures in registry
 – Higher-dimensional Tracer arrays
 – Subgrid arrays

• Smaller memory footprint (v3.1.1)
 – Static per process memory 130MB → 30MB
 – Moving nest infrastructure conditionally compiled

• Enhanced testing, software management
New Platforms and V3 Performance

- Blue Gene/P
- Cray XT5
- In Development
 - Windows
 - Blue Waters
New Platforms and V3 Performance

- Blue Gene/P
- Cray XT5
- In Development
- Windows
- Blue Waters

![Graph showing WRF 'nature run' benchmark on Cray XT with 50TF, 150K Processors]
Accelerators

• Tools for GPU coding
 – Tomas Nipen (UBC visitor)
 – Evaluating automatic tools:
 PGI Accelerator Compilers
 F2C translator (M. Govette, NOAA)
 – See poster on Wednesday
• Chem-solver acceleration
 – GPU, Cell, and Multicore
 – J. Linford, A. Sandu (Va. Tech), M. Vachharajani (CU)
 – SC09 paper (accepted)

RADM2 Benchmark
http://www.mmm.ucar.edu/wrf/WG2/GPU
Coupling Infrastructure

- ESMF-3.1.0rp2 capable
 - WRF-LIS coupling (AFWA)
 - WRF-Hycom coupling (with RSMAS, NRL)
- Hurricane WRF coupler
 - Developed at NCEP for WRF-POM/-Hycom
 - Evaluating for community version
- MCEL (M. Bettencourt)
 - WRF-Hycom (several TC-related projects)
 - NORCOWE, BCCR (I. Barstad)
- MCT (Jacob and Larson)
 - CCSM and WRF (J. Wolfe)
MPAS Development

- **Software requirements:**
 - Community model
 - Global capability
 - Range of scales, applications
 - Massively threaded million-core architectures
 - latency hiding
 - load balancing
 - heterogenous systems
 - Noise-free grid refinement

- **Fundamentally unstructured**
 - Nominally icosahedral but with in-place unstructured refinement
 - Explicit cell/vertex/edge connectivity
 - Temporal refinement
 - Multi-level 3-D parallel decomposition, also unstructured

- **Status**
 - Small test codes: e.g., parallel shallow water on sphere
 - Many computing issues pending