Obs-nudging RTFDDA and Its Extension for Ensemble, Climate and LES Modeling

Yubao Liu
Al Bourgeois, Gregory Roux, Josh Hacker, Wanli Wu, Fei Chen, Tom Hopson, William Cheng, Yuewei Liu, Mei Xu, Wei Yu, Ming Ge, Andrea Hahmann, Francois Vandenberghe, Luca Delle Monache, Jason Knievel, Tom Warner, Scott Swerdlon, Terri Betancourt, Scott Halvorson and John Pace

NCAR/Research Application Laboratory

Acknowledgements: RTFDDA development team, users and collaborators

(10th WRF Users Workshop, 23 - 26 June 2009, Boulder, CO)
Overview

1. Obs-nudging Updates in WRF v3.1
2. Review of WRF-RTFDDA
3. Advanced RTFDDA Capabilities
 → Ensemble-RTFDDA
 → Climate-FDDA
 → RTFDDA-LES
4. Summary
Obs-nudging New Features in WRF V3.1

We would thank the sponsorship of DTRA and collaboration with Penn. State University

- Assimilation of height-based observations
e.g. Wind profilers, Met-towers, Sodars, Radars (VAD) …

- “OBSGRID” preprocessor
e.g. Produce QC-ed obs-nudging data files

- Enhanced obs-nudging diagnostics
name list: obs_prt_max, obs_prt_freq (for serious users)

- Assimilate “raw” meteorological winds
U, V: assign QC flags to 129.

- On-line similarity-theory for surface winds and T observations for all surface-layer schemes
Single-Sounding Test: U Analysis Increments
(at 40 minute into data assimilation, 00h40 Nov 12, 2007)

Input Height-based Sounding
Input Pressure-based Sounding
PBL height (m), 3h Runs (Valid at 15Z, Dec. 12, 2008)

WRFV3.0 + PBL Fix WRFV3.1 WRFV3.1 + PBL Fix

DX=3.3km
T2 (C) & Winds, 3h Runs (Valid at 15Z, Dec. 12, 2008)

WRFV3.0 + PBL Fix WRFV3.1 WRFV3.1 + PBL Fix

DX=3.3km
RTFDDA: Continuous Cycling 4DDA and Forecasting

Obs-nudging FDDA:
\[\frac{dx}{dt} = ... + GW(x_{\text{obs}} - x_{\text{model}}) \]
where \(x = T, U, V, Q, P1, P2 ... \)

\(W \) is weight function
Advanced Modeling With RTFDDA

- Ensemble-RTFDDA
- Climate-FDDA
- RTFDDA-LES

Probabilistic Analysis & forecasting
Climate Downscaling
Nested down

WRF/MM5-RTFDDA
An Example of Need for Broad Weather Info

→ Wind Energy

Regional wind resources

Wind plant siting

Wind turbine siting

Production Load & Trade

“Needs”

Highly accurate
→ 0 – 200m Winds
→ Multi-scale weather
→ Local topography, land uses, and soil properties
→ Model physics for PBL, clouds, LSM, radiation, and
→ Uncertainties
→ Micro-climatography

Wind Energy

Regional wind resources

Wind plant siting

Wind turbine siting

Production Load & Trade
Initial Operational RTFDDA Wind Forecasting in the Mid-western States

3 hourly analysis-forecast cycles with 24h forecasts for all domains and 72h forecasts for Domain 1 and 2.

Cheng et al. P3B.34 SENSITIVITY OF A SIMULATED WINTER STORM TO WRF MODEL PHYSICS OVER COMPLEX TERRAIN.

Roux et al. 5B.5 VERIFICATION OF HIGH-RESOLUTION WRF-RTFDDA SURFACE FORECASTS OVER MOUNTAINS AND PLAINS
1. Ensemble-RTFDDA

Member 1
Perturbations
observations

Member 2
Perturbations
observations

Member 3
Perturbations
observations

...

Member N
Perturbations
observations

N forecasting nodes | x spare nodes | M pre/post- proc nodes

36-48h fcsts

Post processing

Input to decision support tools

Archiving and verification
An Operational E-RTFDDA System

Surface and X-sections – Mean, Spread, Exceedance Probability, Spaghetti, …

Pin-point Surface and Profiles – Mean, Spread, Exceedance probability, spaghetti, Wind roses, Histograms …

Operated at US Army DPG since Sep. 2007
Rain Fcsts at Boulder. June 23, 00Z Cycle

https://147.241.62.30/images/e4dwx/GE3DPG/

1h Rain, 00Z, June 24, 2009
2. Climate-FDDA

- Goal: high-resolution grid regional and local scale wind resource and climatography
- Methodology: dynamical climatology downscaling—~200 km global to 1 – 5 km grids for 20 – 30 yrs.

Essentially, run RTFDDA for the past history
A Climate-FDDA Wind Analysis Example

July 1998 - 2007
60-m AGL winds of C-FDDA (5km grid), ECMWF (40km grid) and observations
Microscale Precipitation Climatology

2008-2009 Winter Seasonal Rain

D4: DX=1.5km

Rostkier-Edelstein et al. 3A.5 HIGH RESOLUTION WRF-FDDA SEASONAL PRECIPITATION OVER COMPLEX TERRAIN.
3. RTFDDA-LES Modeling

Cedar Creek Wind Farm
Nested-domain WRF-RTFDDA-LES

Liu et al. 2B.7 SIMULATING INTRA-FARM WIND VARIATIONS WITH THE WRF-RTFDDA-LES MODELING SYSTEM.
Summary

- New features of “Obs-nudging” has been added to WRF 3.1

- The “Obs-nudging” based RTFDDA has been enhanced for E-RTFDDA, C-FDDA, and RTFDDA-LES modeling.

- An “obs-nudging”-EnKF based hybrid 4D-EnKF data assimilation is currently under development and the new enhancements will be incrementally added to WRF community releases.

Thank you!