Inhomogeneous Background Error Modeling and Estimation over Antarctica with WRF-Var/AMPS

Yann MICHEL

\(^1\)Météo-France, CNRM/GMAP

\(^2\)NCAR, MMM/DAG

10\(^{th}\) Annual WRF Users’ Workshop

23\(^{th}\) June 2009
AMPS is a version of WRF regional model adapted to the polar physics of Antarctica. Data assimilation is performed for the two nested 45 km and 15 km resolution domains.
Variational assimilation minimizes a cost function:

\[J(v) = \frac{1}{2} v^T B^{-1} v + (d - Hv)^T R^{-1} (d - Hv) \]

where the background error covariance matrix \(B \) is usually too large (\(\sim 10^{12} \)) to be either stored or estimated. \(B \) is modeled through a sequence of operators (Control Variable Transform) describing the average covariances of background errors. In WRFVAR, the formulation is the sequence of four transforms:

\[v = B^{1/2} \chi = U_p U_v U_{ih} S \chi \]

- \(U_p \) describes locally-averaged physical balances of errors between variables \(\rightarrow \) use of grid-point statistical regressions,
- \(U_v \) describes domain-averaged vertical autocorrelations \(\rightarrow \) use of Empirical Orthogonal Functions
- \(U_{ih} \) describes locally-averaged horizontal autocorrelations \(\rightarrow \) use of inhomogeneous recursive filters,
- \(S \) describes locally-averaged variances.
Data assimilation and Background Error

Variational assimilation minimizes a cost function:

\[J(v) = \frac{1}{2} v^T B^{-1} v + (d - Hv)^T R^{-1} (d - Hv) \]

where the background error covariance matrix \(B \) is usually too large (\(\sim 10^{12} \)) to be either stored or estimated.

\(B \) is modeled through a sequence of operators (Control Variable Transform) describing the average covariances of background errors.

In WRFVAR, the formulation is the sequence of four transforms:

\[v = B^{1/2} \chi = U_p U_v U_{ih} S \chi \]

- \(U_p \) describes locally-averaged physical balances of errors between variables \(\rightarrow \) use of grid-point statistical regressions,
- \(U_v \) describes domain-averaged vertical autocorrelations \(\rightarrow \) use of Empirical Orthogonal Functions
- \(U_{ih} \) describes locally-averaged horizontal autocorrelations \(\rightarrow \) use of inhomogeneous recursive filters,
- \(S \) describes locally-averaged variances.
The balance U_p aims to represent the cross-correlations between errors that are linked with atmospheric dynamics

$$
\begin{pmatrix}
\psi \\
\chi \\
t \\
Ps \\
rh
\end{pmatrix} =
\begin{pmatrix}
I & 0 & 0 & 0 & 0 \\
M & I & 0 & 0 & 0 \\
N & P & I & 0 & 0 \\
Q & R & S & I & 0 \\
0 & 0 & 0 & 0 & I
\end{pmatrix}
\begin{pmatrix}
\psi \\
\chi_u \\
t_u \\
Ps_u \\
rh
\end{pmatrix}
$$

The balance represents geostrophic coupling between wind and mass fields, surface friction effects, and tracer-like relationships.

This matrices are computed from local or domain-averaged regressions.

Latitude-binning

A new latitude-binning accounts for the special AMPS stereographic polar projection, and allows to represent large scale inhomogeneities in the balance.
Inhomogeneous Background Error Modeling: Balance

The balance U_p aims to represent the cross-correlations between errors that are linked with atmospheric dynamics

$$
\begin{pmatrix}
\psi \\
\chi \\
t \\
Ps \\
rh
\end{pmatrix} =
\begin{pmatrix}
I & 0 & 0 & 0 & 0 \\
M & I & 0 & 0 & 0 \\
N & P & I & 0 & 0 \\
Q & R & S & I & 0 \\
0 & 0 & 0 & 0 & I
\end{pmatrix}
\begin{pmatrix}
\psi \\
\chi_u \\
t_u \\
Ps_u \\
rh
\end{pmatrix}
$$

The balance represents **geostrophic coupling** between wind and mass fields, surface friction effects, and tracer-like relationships.

This matrices are computed from local or domain-averaged regressions.

Latitude-binning
A new latitude-binning accounts for the special AMPS stereographic polar projection, and allows to represent large scale inhomogeneities in the balance.
Inhomogeneous Background Error Modeling: Balance

The balance U_p aims to represent the cross-correlations between errors that are linked with atmospheric dynamics

$$\begin{pmatrix}
\psi \\
\chi \\
t \\
Ps \\
rh
\end{pmatrix} =
\begin{pmatrix}
I & 0 & 0 & 0 & 0 \\
M & I & 0 & 0 & 0 \\
N & P & I & 0 & 0 \\
Q & R & S & I & 0 \\
0 & 0 & 0 & 0 & I
\end{pmatrix}
\begin{pmatrix}
\psi \\
\chi_u \\
t_u \\
Ps_u \\
rh
\end{pmatrix}$$

The balance represents geostrophic coupling between wind and mass fields, surface friction effects, and tracer-like relationships.

This matrices are computed from local or domain-averaged regressions.

Latitude-binning
A new latitude-binning accounts for the special AMPS stereographic polar projection, and allows to represent large scale inhomogeneities in the balance.
The balance U_p aims to represent the cross-correlations between errors that are linked with atmospheric dynamics.

\[
\begin{pmatrix}
\psi \\
\chi \\
t \\
Ps \\
rh
\end{pmatrix} = \begin{pmatrix}
I & 0 & 0 & 0 & 0 \\
M & I & 0 & 0 & 0 \\
N & P & I & 0 & 0 \\
Q & R & S & I & 0 \\
0 & 0 & 0 & 0 & I
\end{pmatrix} \begin{pmatrix}
\psi \\
\chi_u \\
t_u \\
Ps_u \\
rh
\end{pmatrix}
\]

The balance represents geostrophic coupling between wind and mass fields, surface friction effects, and tracer-like relationships.

This matrices are computed from local or domain-averaged regressions.

Latitude-binning

A new latitude-binning accounts for the special AMPS stereographic polar projection, and allows to represent large scale inhomogeneities in the balance.
The balance U_p aims to represent the cross-correlations between errors that are linked with atmospheric dynamics

$$
\begin{pmatrix}
\psi \\
\chi \\
t \\
Ps \\
rh
\end{pmatrix} =
\begin{pmatrix}
I & 0 & 0 & 0 & 0 \\
M & I & 0 & 0 & 0 \\
N & P & I & 0 & 0 \\
Q & R & S & I & 0 \\
0 & 0 & 0 & 0 & I \\
\end{pmatrix}
\begin{pmatrix}
\psi \\
\chi_u \\
t_u \\
Ps_u \\
rh
\end{pmatrix}
$$

The balance represents geostrophic coupling between wind and mass fields, surface friction effects, and tracer-like relationships.

This matrices are computed from local or domain-averaged regressions.

Latitude-binning

A new latitude-binning accounts for the special AMPS stereographic polar projection, and allows to represent large scale inhomogeneities in the balance.
The $\chi - \psi$ balance

Figure: Cross-covariances $\chi - \psi$ at 60 S
The $\chi - \psi$ balance

Figure: Cross-covariances $\chi - \psi$ at 30 S

Decrease of $\chi - \psi$ balance at the equator is well known and linked with decrease of geostrophy.

Figure: Cross-covariances $\chi - \psi$ at 60 S

Figure: Cross-covariances $\chi - \psi$ at 90 S

Decrease of $\chi - \psi$ balance may be explained by topography effects over the Antarctic plateau.
The $t - \psi$ balance

Figure: Cross-covariances $t - \psi$ at 60 S

Figure: Cross-covariances $t - \psi$ at 90 S

Temperature inversion through radiative cooling in clear sky conditions?
Outline

1. Introduction
2. The Physical Transform
3. Horizontal Correlations
4. Variances
5. Summary
Recursive filters are a fast $\mathcal{O}(N)$ grid smoothing technique that can be applied to correlation modeling.

Inhomogeneous recursive filters have two main advantages:

- Representation of the spatial variations of background error length scales
- Use of large grids featuring high map projection factors.

Figure: Inhomogeneous recursive filters over AMPS domain with a map factor.
Recursive filters are a fast $O(N)$ grid smoothing technique that can be applied to correlation modeling. Inhomogeneous recursive filters have two main advantages:

- Representation of the spatial variations of background error lengthscales
- Use of large grids featuring high map projection factors.

Figure: Inhomogeneous recursive filters over AMPS domain with a map factor.
Recursive filters are a fast $O(N)$ grid smoothing technique that can be applied to correlation modeling.

Inhomogeneous recursive filters have two main advantages:

- Representation of the spatial variations of background error lengthscales
- Use of large grids featuring high map projection factors.

Figure: Inhomogeneous recursive filters over AMPS domain with a map factor
Lengthscales estimates

A new economical estimate of lengthscales is performed through the computation of the ratio of variance a field over the variance of the Laplacian:

\[L = \left(8 \frac{V(\psi)}{V(\xi)} \right)^{1/4} \]

Lengthscales geographical variations

For balanced variables, geostrophic scaling may be written

\[\Delta L = \frac{N}{f_0} \Delta Z \]

\(\Delta Z, 1/f_0 \downarrow \) going poleward such that one expects \(\Delta L \downarrow \) going poleward. Data density and topography effects may be important as well.
Grid-Point Lengthscales

Figure: ψ local lengthscale (km)

Figure: Ps_u local lengthscale (km)
Outline

1. Introduction
2. The Physical Transform
3. Horizontal Correlations
4. Variances
5. Summary
Grid-Point Variances

Figure: ψ local variance rescaling factor

Figure: t_u local variance rescaling factor
Background error modeling

A newly developed formulation of \mathbf{B} in WRFVAR allows main climatological inhomogeneities to be represented for the balance, lengthscales and variances parts.

Antarctic Background error

♣ Application to the Antarctic region with WRFVAR/AMPS shows strong similarities with mid-latitude estimates. However interesting differences can be pointed out, and related to special properties of this region (strong topography, boundary layer, sea/ice).
♣ Local variances are higher in storm tracks (ψ, rh, Ps_u) or in contrary over the plateau (t_u), or more complicated (χ_u)
♣ Local lengthscales estimates show ’geostrophic’ inhomogeneity for ψ and rh, as well as local inhomogeneity for χ_u, t_u, Ps_u (featuring a local maximum over the plateau).
Background error modeling

A newly developed formulation of \mathbf{B} in WRFVAR allows main climatological inhomogeneities to be represented for the balance, lengthscales and variances parts.

Antarctic Background error

♣ Application to the Antarctic region with WRFVAR/AMPS shows strong similarities with mid-latitude estimates. However interesting differences can be pointed out, and related to special properties of this region (strong topography, boundary layer, sea/ice).

♣ Local variances are higher in storm tracks (ψ, ρh, $P s_u$) or in contrary over the plateau (t_u), or more complicated (χ_u).

♣ Local lengthscale estimates show ’geostrophic’ inhomogeneity for ψ and ρh, as well as local inhomogeneity for χ_u, t_u, $P s_u$ (featuring a local maximum over the plateau).