UAFSmoke - A WRF/Chem Wildfire Smoke Forecasting System for Alaska

University of Alaska Fairbanks in collaboration with Georg Grell from the Global System Division, NOAA, Saulo Freitas from the Brazil Center for Weather Forecasting and Climate Studies (CPTEC/INPE)

M. Stuefer¹,², G. Grell³, S. Freitas⁴, G. Newby², A. Kulchitsky², L. Higbie²
¹: GEOPHYSICAL INSTITUTE, UNIVERSITY OF ALASKA FAIRBANKS
²: ARCTIC REGION SUPERCOMPUTING CENTER
³: NOAA Global System Division
⁴: Brazil Center for Weather Forecasting and Climate Studies

10th WRF Users' Workshop
OUTLINE

- BACKGROUND
- SMOKE FORECAST SYSTEM
- SYSTEM MODULES/METHODS
- NEAR-REAL TIME SMOKE FORECASTS
- EVALUATION DATA
- SUMMARY, FUTURE CHALLENGES
Fire Situation Report:
Statewide total area burnt in 2009: 275,326 acres
Number of fires: 285
Cause: Human 193
(prescribed 10)
Lightning 92

For comparison:
6.6 Mio acres burnt in 2004
Smoke Dispersion System

1. **Wildfire** source data: => ‘exact’ location and area
2. What is burning (type of surface)
3. Status of wildfire: => flaming or smoldering
4. For forecasting: fire spreading
5. Accurate quantification of pollutants emitted from wildfires
6. Smoke plume estimate: => how high, what concentration?
7. Meteorological feedback at appropriate scales
Alaska WRF/Chem ‘UAFSmoke’ Dispersion System

FIRE DETECTION & BURN AREA FROM REMOTE SENSING AND ON-SITE

FIRE EMISSIONS

Static Fuel Data Emission Factors

BACKGROUND EMISSIONS

WRF-CHEM WITH INLINE PLUME

WRF-Chem netCDF

POSTPROCESSING
Emitted tracer mass E for a certain fire species i from biomass burning is estimated according to:

$$E_i = a \cdot b \cdot CE \cdot e_i$$

- a: burning area
- b: fuel loading
- CE: combustion efficiency (above-ground biomass available for burning)
- e_i: emission factor

- Andrae and Merlet’s (2001) comprised necessary emission factors in order to relate various fuel-load types involved in **biomass burning to emissions**.

Saulo Freitas and Karla Longo from the Center for Weather Forecasting and Climate Studies (CPTEC/INPE) in Sao Paulo developed an emission data generator package, which has been made compatible with WRF/Chem.
PREP_CHEM_SOURCES

Emission data generator package
Gridded emission fluxes (kg/m²).

Biomass burning / wildfire emissions
- Brazilian Biomass Burning Emission Model (Freitas et al. 2005; Longo et al., 2007)
- Emission Factors from Andrae and Merlet, 2001
- 110 chemical species, 6 types of biomass burned
- GFEDv2: Global Fire Emissions Database (van der Werf et al., 2006): 8 days/monthly - 1º x 1º

Anthropogenic sources
- RETRO: REanalysis of the TROpospheric chemical composition over the past 40 years, global, 0.5º x 0.5º, monthly
- EDGAR: Emission Database for Global Atmospheric Research, global, 1º x 1º, annually

Biogenic sources
- GEIA: Global Emissions Inventory Activity, 1º x 1º

GOCART: Goddard Chemistry Aerosol Radiation and Transport model, 1º x 1.25º, monthly, anthropogenic and natural sources

by Saulo Freitas and Karla Longo, Brazil Center for Weather Forecasting and Climate Studies
Hybrid fire products as wildfire source:

1: Geostationary Operational Environmental Satellite - Wildfire Automated Biomass Burning Algorithm (GOES WF_ABBA) product (Prins et al., 1998).

2: University of Alaska Geographic Information Network of Alaska (GINA) Source: Fire Detection and Burn Area MODIS satellite thermal and reflectance bands are used as source for detection of Hot Spots and Burned Areas.

- **MOD 14** algorithm: MODIS Thermal Anomalies detection during day and nighttime at 1 kilometer resolution. => MODIS hotspots ~ 6 scenes/day
 (algorithm uses 3.9 μm and 11 μm channels, and additional 1.65- and 2.15 μm channels during night).
- => Combination of hotspots and burned area is used to specify areas of active fires.
- Data availability via UAF Geographic Information Network of Alaska (GINA). Received in real-time by the satellite reception ground station at the University of Alaska Fairbanks.
The three fire products databases may be combined using a filter algorithm to avoid double count of the same fire, by eliminating additional fires within a circle of 1 km radius. The fire detection maps are merged with 1 km resolution fuel load to provide the associated emission factor, combustion factor and carbon density.
inline in **WRF/Chem Version 3**: PLUMP => one-dimensional plume model including parameterized cloud physics has been implemented **inline** in **WRF/Chem**.

Inaccuracies are avoided due to otherwise necessary parameterization because of the small scale characteristics of the plume rise.

The one-dimensional fire plume rise model (PLUMP, Latham, 1994) estimates the vertical displacement of fire emissions mainly due to the heat emitted from fires.

$$\Delta h = \left(\frac{3r_0^2x^2}{4\beta^2F^2K^2} \right) + \left(\frac{r_0}{\beta}\right)^3 - \frac{r_0}{\beta}$$

\[F = \left(\frac{w_0^2\rho_a}{2\Delta \rho g} \right)^{\frac{1}{2}}\]

\[w_0 = \frac{8.8 \times 10^{-6} Q_h T_P}{g(T_P - T_a)r_p^2}\]

\[T_P, T_a: \text{temperature of plume and ambient respectively, K}\]

\[r_p: \text{the radius of fire, m}\]

\[Q_h: \text{the heat release rate, J/s}\]
ALASKA daily smoke forecasts

⇒ **48 hour** Smoke WX
⇒ GFS meteorological initial and boundary conditions
⇒ **daily** during the fire season
⇒ Forecast graphics at http://smoke.arsc.edu

⇒ Chemistry: GOCART simple aerosol scheme, no O3
⇒ WSM 5-class scheme microphysics
⇒ RRTM longwave
⇒ Dudhia shortwave
⇒ YSU boundary layer scheme
2004: PM 2.5
Animation
Model Verification

Data available:

- with ground based reference data: PM measurement data from State and Local Air Monitoring Stations (SLAMS) and Special Purpose Monitoring Stations (SPM) are available.
- GINA maintains a MODIS and Landsat5 database including fire related products.
- LIDAR (UAF)
- DRUM aerosol measurements
- Sun photometer and aerosol measurement data from the DOE Atmospheric Radiation Measurement (ARM) program.
- Multiangle imaging spectroradiometer (MISR) data & additional satellite remote sensing data are available for model comparison.

Source: J. Conner, Fairbanks North Star Borough
2008: Forecast Comparison for Particulate Matter (PM2.5)

Measurement Source: James Conner, Fairbanks North Star Borough
Summary

• Alaska UAFSmoke **WRF/Chem system** has been developed.

• Daily smoke forecast runs are performed at the **Arctic Region Supercomputing Center (ARSC)**. Experimental products are available at http://smoke.arsc.edu/.

• Fire source data are used from the Alaska Interagency Coordination Center (AICC). In synergy we use **MODIS** fire hotspots and image products from UA Geographic Information Network of Alaska (GINA), and **GOES WF_ABBA fire products**. MODIS data are received typically within 40 minutes of reception. MODIS products are compared to AICC data and optionally serve as direct input to the smoke model system.

• Alaska fuel load was derived from land cover classification.

• Gridded daily wildfire emission fluxes (kg/m²), anthropogenic and biogenic sources are derived using the Prep_sources_chem emission data generator package.

• Fire Plume Rise inline in WRF/Chem accounts for the vertical displacement of fire emissions due to the heat emitted from fires.

• Fire spread and diurnal cycles are neglected during the forecast period.

• Test runs during the fire season show good results. The timing of smoke episodes in Fairbanks has been well predicted.