
• We note a marked tendency for the data assimilation step to dry the soil.  
Satellite overpasses occur at roughly 8Z and 20Z for this domain.  For points 
with satellite observations, drying usually happens at these times for the 
data assimilation run.
• Possible reasons:

•Initial condition from spinup run is too wet
•Bias in WRF climatology
•Poorly specified formula to convert model state into equivalent 
observations

• We plan to generate new CDF’s and investigate the dependence of the bias 
on landcover type and time of day.

LIS can be run coupled with the WRF meteorological model.
•We are using ARW version 2.2 with LIS 5.0 and our SHEELS additions.

Within the LIS system, we assimilate ASMR-E soil moisture observations 
using an Ensemble Kalman Filter (EnKF).   Kalman filtering is a data 
assimilation method that combines a forecast (background) with 
observations to generate an improved estimate of a model variable.  A 
Kalman Filter calculates an optimal weighting between the background and 
the observation.  The EnKF uses the spread of the ensemble to represent 
forecast error covariance.  We used an ensemble with 16 members generated 
using perturbations of 3 forcing variables (incident longwave and shortwave 
radiation, and rainfall), 14 state variables (14 layers of soil moisture), and 1 
observation variable (AMSR-E soil moisture).
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Objectives of Project
• Improve simulations of soil moisture/temperature, and consequently 
boundary layer states and processes, by assimilating AMSR-E soil moisture 
estimates into a coupled land surface-mesoscale model (LIS-WRF)

• Provide a new land surface model as an option in the Land Information 
System (LIS) 

SHEELS – Simulator for Hydrology and Energy Exchange at 
the Land Surface
• Distributed land surface hydrology model

• Heritage: 1980’s Biosphere-Atmosphere Transfer Scheme (BATS)

• Can run off-line or coupled with meteorological model

• Flexible vertical layer configuration designed to facilitate microwave data 
assimilation

• Contains radiative transfer model for microwave applications

• Described in Martinez et al. (2001), Crosson et al. (2002)
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SHEELS Integration in LIS
•We have integrated SHEELS into LIS (Kumar et al., 2006), a software 

framework for running land surface models. 
•We have performed off-line simulations over a Great Plains domain in LIS 

to provide initial conditions to future WRF-SHEELS coupled simulations.
•SHEELS ‘spin up’ has been performed off-line, forced with North American 

Land Data Assimilation System (NLDAS) data from 1/1/2002 through 6/9/2003. 

•Highly customizable at run-time, facilitating modeling experiments & 
intercomparisons

•Modular structure allows user to specify:
     Land Surface Model
     Base forcing (meteorological fields)
     Supplemental forcing (e.g. precipitation)
     Parameters include land cover, soil type, greenness fraction, 

topography
•Domains of input variables may be independent.
•Allows several tiles per grid cell to represent subgrid variability of soil type.
•Can run coupled with the WRF meteorological model.

 Conically scanning passive microwave radiometer

 Measures brightness temperatures at 6 frequencies, at H and V 
polarizations, from 6.9 to 89.0 GHz.

 Altitude of 705 km yields a swath 1445 km wide. 

 Algorithm minimizes differences between the observed brightness 
temperatures and those generated using a forward radiative transfer model. 

 Due to extensive radio frequency interference in the 6.9 GHZ channel, 10.7 
and 18.7 GHz observations are used for soil moisture estimation.  

 AMSR-E/Aqua global surface soil moisture and vegetation water content are 
generated from level 2A AMSR-E brightness temperatures spatially 
resampled to a nominal 25-km equal area earth grid. 

NASA Aqua satellite with AMSR-E 
instrument

S
o

il 
D

e
p

th
 (

m
)

0.0

 
0.3

 
0.6

 
0.9

 
1.2

 
1.5

Dry                                                        Wet

Fractional soil moisture, Jan. – July 2003
                      North Texas                               Nebraska

• The dynamic range of AMSR-E observed soil 
moisture is small relative to that of the model.
• A correction (right) is applied to convert the 
observation into a model-equivalent value. 
• A Cumulative Distribution Function (CDF)-
matching technique is used here. This is similar 
in purpose to the bias corrections usually 
applied to satellite observations in NWP models. 
• Simulations made without the proper 
correction showed a pronounced dry bias.  
• Issues remain--see discussion later.

AMSR-E retrieved soil moisture for August 
2, 2008 over the southeastern US  
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Results

• Resolve bias problem, and evaluate possible improvements to the CDF-
matching adjustment by deriving separate curves for different vegetation 
types and times of day. 

• Run WRF-SHEELS coupled model in 12-hour forecast cycles for January 
and July, 2003.

• Perform additional validation, including near-surface air temperature and 
humidity against Mesonet measurements

• Evaluate value of AMSR-E DA in estimating boundary layer states 
(temperature, humidity, wind) and surface fluxes.

• Determine landscape and hydrometeorological conditions under which 
assimilation is most (and least) helpful.
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Discussion 

• The control and DA runs experience rain in Altus for the initial 3 hours.
• The Altus Mesonet measurements (blue line) and the Stage IV run (black 
line) indicate no rain.
• The 20Z and 21Z model water plots show that the data assimilation 
correctly dries out the soil in SW Oklahoma and in nearby parts of Texas.

Discussion

• WRF model rain and Stage IV observations show a similar rainfall 
distribution, however WRF under-predicts the amount in Nebraska.
• DA correctly adds soil water in this region.
• This is a rare case where the current implementation of DA adds water--see 
discussion of bias above.
 

Sample DA Run Forecasts
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• We performed LIS-WRF coupled model runs with the SHEELS LSM, using 
ARW version 2.2 (Skamarock et al., 2005) along with LIS release 5.0 with 
modifications for the SHEELS LSM and AMSR-E soil moisture data 
assimilation.  
• All model runs were made with State Soil Geographic Database 
(STATSGO) soil types, University of Maryland land use classification, Leaf 
Area Index from the Advanced Very High Resolution Radiometer (AVHRR) 
and greenness fraction from the National Centers for Environmental 
Prediction (NCEP). 
• WRF runs used initial and boundary conditions from the NCEP Eta model. 
 
• SHEELS model variables were initialized from a LIS ‘spin up’ simulation in 
uncoupled mode using NLDAS base forcing (surface meteorological 
variables and downwelling radiation) and Stage IV precipitation estimates 
(radar estimates adjusted with daily rain gauge totals) from January 2002 
through June 2003.  
• Experimental LIS-WRF coupled model runs were performed for each day 
in June 2003 at 0 and 12 UTC.  For these 60 initial times, we made 48-hour 
forecasts for both a control run and an AMSR-E data assimilation run.
• Simulations were performed over a central U.S. domain extending from 
northern Texas to Nebraska.  

Time series for one sample point 
for four different settings of 
Observation Error (Sy) are shown.  
As the observation error 
decreases, the impact of the data 
assimilation increases as 
expected.
•These runs reset to Eta initial 
conditions every 24 hours.

Mesonet: 5cm soil moisture derived 
from hourly Oklahoma Mesonet 
measurements at Altus.
Stage IV Run: LIS uncoupled run 
with observed (radar/rain gauge) 
Stage IV rainfall.
Control Run: LIS-WRF coupled run 
without data assimilation
DA Run: LIS-WRF coupled run with 
data assimilation.

Altus Soil Water (00Z 11 Jun 2003 Run)
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