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1. Introduction 

  No existing model can fully represent the 

observed climate system. Each model, or each 

physical configuration of a model, may capture some 

certain climate signals whereas others don’t. Thus, 

consensus of multiple models or multiple physical 

configurations of a model have recently been 

highlighted due to their superior skill over those 

using a single model or configuration (Rajagopalan 

et al. 2002). Our previous studies have shown that for 

precipitation simulation, significant skill 

improvement can be achieved using an optimal 

ensemble of multiple cumulus schemes, including 

regime dependence for activation and relative 

contribution from the participating schemes (Liang et 

al. 2007; Liu et al. 2009). 

  We have finalized the Climate extension of the 

Weather Research and Forecasting model (CWRF) 

for the initial release scheduled in this summer 

(Liang et al. 2010a). This CWRF incorporates over 

1024 combinations of alternative schemes 

representing each of and interactions among the 

major physical processes of cloud, aerosol, radiation, 

surface, planetary boundary layer (PBL), cumulus, 

and microphysics. It provides an unprecedented tool 

to explore, analyze, and ultimately solve the 

ensemble optimization problem for weather and 

climate prediction. 

2. Brief introduction to the latest CWRF 

The CWRF has been developed on the basis of the  
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Weather Research and Forecasting model (WRF, 

Skamarock et al. 2008) by incorporating numerous 

improvements that are crucial to climate scales, 

including interactions between 

land–atmosphere–ocean, convection–microphysics 

and cloud–aerosol–radiation, and system consistency 

throughout all process modules (Liang et al. 2005a-b; 

Yuan and Liang 2010). The CWRF improvements 

have been accomplished through iterative, extensive 

model refinements, sensitivity experiments, and 

rigorous evaluations over the past 8 years. As a result, 

the CWRF has demonstrated greater capability and 

better performance (with its designated physics 

configuration) in simulating the U.S. regional climate 

than our existing CMM5 (Liang et al. 2004, 2007; 

Zhu and Liang 2005, 2007) and the original WRF. 

This justifies its initial release for the community use, 

as scheduled in this year after the first paper on a 

general model description and basic skill evaluation 

(Liang et al. 2010a). Detailed description of the 

model and its evaluation will come along as a series 

of academic papers. This system provides an ideal 

platform for developing procedures for optimal 

ensemble prediction of climate variations. 

3. Optimization Experiment of Multiple 
Physics Configuration over the U.S. 

3.1 Selection of the participating physical scheme 

members for optimization 

We first evaluate the CWRF results with selected 

physics configurations by examining their overall 

spatial frequency distributions of correlation 

coefficients (CC) and root mean square error (RMSE) 

of daily mean precipitation variations as compared 

with concurrent observations. By comparison, we 
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Figure 1. Point-wise Correlation and RMSE frequencies results of precipitation for 1993 MJJ over U.S. land 

area from our incorporated physical schemes grouped as five physical processes (left to right column): 

Cumulus, Microphysics, PBL, Radiation and Land Surface. 

remove those schemes with extremely poor CC and 

RMSE scores, such as GD and GDL cumulus 

schemes, Reisner and WDM6 microphysics schemes 

in microphysics, and QNSE PBL scheme (Figure 1). 

For the remaining schemes in each group of the five 

key physical processes (radiation, surface, PBL, 

cumulus, and microphysics), we compare the overall 

spatial frequency distributions of CC and RMSE 

across the schemes (rather than with observations). 

That comparison allows us to further eliminate those 

having great similarity (high CC and small RMSE) 

while choosing one representative scheme. After all 

the representative members have been selected, we 

then apply various optimization methods to seek the 

best prediction of regional climate variations. We 

have found a rather simple method based on a linear 

combination of the CC and RMSE scores to define 

the weights and produce an ensemble prediction of 

precipitation that has superior skills to individual 

members as well as the average ensemble using an 

equal weight. The results are summarized below.  

3.2 Optimization of Multiple Physics 

Configurations 

The crucial aspect of the ensemble prediction is 

how to construct the optimal weights for individual 

members. So far these weights have been optimized 

to minimize local RMSE or maximize CC against 

observations. Recently, we have tested three 

ensemble forecast methods using two member sizes:  

1. AVE: the ensemble forecast is a simple average 

of all members, assuming an equal weight.  

2. OPT: the ensemble forecast is produced by 

applying the optimized weights that are derived by 

minimizing the RMSE for a previous training period. 

Here, the optimization solution follows Liang et al. 

(2007) while the training and subsequent forecast 

periods are one month each but non-overlapping.  

3. LCR: the ensemble forecast is produced by 

applying the weights as a linear combination of the 

CC and RMSE scores for individual members from a 



 3 

 

Figure 2. Spatial frequency distribution of pointwise correlation coefficient and root mean square error (RMSE) 

of daily mean precipitation as compared with observations during 1993 June over the U.S. land grids simulated 

by the CWRF using two best schemes (CTL, UW-PBL), and three ensemble forecast methods (OPT, AVE, LCR) 

using two number sizes (6, 16), as well as the hindcast ensemble optimization. 

previous training period. For member i  with 

CC=ic  and 1RMSE−=ir  scores, its weight 

can be defined as: 
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N  is the total number of members in the ensemble, 

and α  is a relaxation coefficient between 0.0 and 

1.0, presently chosen as 0.5. As such, the LCR 

procedure assigns bigger weights to those members 

with higher CC and smaller RMSE values. 

4. Experimental Results 

Figures 2-3 illustrate the spatial frequency 

distributions of pointwise CC and RMSE of daily 

mean precipitation as compared with observations 

during 1993 June and July over the U.S. land grids 

simulated by the CWRF using two best schemes 

(CTL, UW-PBL), and the three ensemble forecast 

methods (OPT, AVE, LCR) using two number sizes 

(6, 16), as well as the hindcast ensemble optimization. 

The hindcast optimization is the same as OPT except 

that the training and forecast are made on an identical 

month, and thus represent the upper limit of the 

ensemble prediction skill we seek to approach. The 6 

members are a subset of the 16-member ensemble, 

including the CTL plus five representative schemes 

(best of each physics group) as selected earlier. Our 

initial conclusions from these results are as follows:  

1. The ensemble forecast result, irrespective of the 

method defining the weights, is always better than 

those of individual members;  

2. The ensemble forecast result is better when 

more members are included;  
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Figure 3. Spatial frequency distribution of pointwise correlation coefficient and root mean square error (RMSE) 

of daily mean precipitation as compared with observations during 1993 July over the U.S. land grids simulated 

by the CWRF using two best schemes (CTL, UW-PBL), and three ensemble forecast methods (OPT, AVE, LCR) 

using two number sizes (6, 16), as well as the hindcast ensemble optimization. 

3. The ensemble forecast based on the LCR 

method defining the weights is more realistic than the 

AVG method, while the OPT method is the worst; 

and 4. The ensemble forecasts based on three 

methods (AVG, OPT, LCR) have substantial gaps 

from the hindcast ensemble optimization, and thus a 

large room for further improvement.  

We strongly believe that the OPT method can be 

improved significantly by defining a more robust 

objective function for optimization. This is our next 

primary focus.  

5. Conclusions and Future Work 

The CWRF model has incorporated and improved 

a bunch of existed major schemes for each physical 

process of cloud, aerosol, radiation, surface, 

planetary boundary layer (PBL), cumulus, and 

microphysics. They can form over 1024 combinations, 

and thus produce same amount of simulation results. 

This huge data source provides an ideal basis for 

analyzing and solving the ensemble optimization 

problem for weather and climate prediction. The 

ensemble forecast results always demonstrate 

superior skills over those individual members, and a 

large room for further improvement exists. Since 

both observed and simulated precipitation, especially 

their differences, contain significant small-scale 

features, their direct use will result in unwanted 

noises to the optimization solution. We will seek 

advanced mathematical or statistical tools sort out 

signals at appropriate scales, and develop a more 

suitable objective function for minimization to obtain 

robust weights.  
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