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Abstract 

Accurate prediction of weather conditions has the power to save money and lives. Meteorologists play an 
important role in this process by assessing when numerical forecasts have a higher chance of failing. A 
way to assess the confidence one could place in a forecast is needed in situations where meteorologist 
input is not available. To address this issue, a Confidence Index(CI) algorithm was developed that uses 
rules to identify problematic features in a forecast.  When these features are present, CI will reflect a low-
er confidence as a result. Previous implementation revealed CI’s usefulness with the Canadian GEM 
model in Eastern Canada, but to demonstrate applicability over other geographical regions, testing was 
needed. This was done by calculating CI’s for GFS High-Resolution Model forecasts in different locations. 
Results have revealed that despite changing models and location, the CI performed in accordance with 
the conceptual model. No significant differences in performance were found when switching models, but 
the algorithm struggled more over the Southeast US Region, possibly due to rules tailored for Eastern 
Canada. Thus, new rules and modifications to current rules have been developed to better account for a 
variety of locations and weather phenomena.  

 
 
1 INTRODUCTION 

Today, numerical weather prediction is heavily 
used for determining what is to come. However, 
the models are not without flaws, and at times can 
perform poorly. Forecasters that monitor these 
models can pick up on patterns and scenarios in 
which the models are more likely to fail, so many 
planners of outdoor events, construction projects, 
or other weather-sensitive activities rely on fore-
casters for an accurate forecast to guarantee their 
event is a success. However, decision makers are 
now more than ever using forecasts taken straight 
from the models to avoid the extra cost of a per-
sonalized forecast (Snellman, 1977). This leaves 
them susceptible to a risk if the forecast fails. 
Hence, a simple, quick calculation is desired to 
provide an assessment of the confidence one can 
place in a forecast.  The impetus for the develop-
ment of CI was for use with WRF forecasts for in-
cident meteorology. 

 

 

1.1 CI Concept 

The CI v0.1 was designed by G. Kierstead and P. 
Pick to address this problem. It is calculated by an 
algorithm that uses a set of rules to identify prob-
lematic features in a forecast. The presence of 
more problematic features is reflected by a higher 
CI-Risk score or lower CI, hence a greater chance 
of the forecast failing. Ideally, the Confidence In-
dex verses Model Error plot will be similar to Fig. 
1. As pictured, high CI or low risk correspond with 
low model error. It is important to note that this 
relationship is not strictly linear. When the confi-
dence index is low, it cannot be assumed that the 
model error will be high. The model may produce 
a good forecast for a challenging situation, but the 
chances of the model error being high are much 
greater.    
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Figure 1:  Left: Idealized results of Model Error vs. CI. Right: Idealized results of Model Error vs. 
CI-Risk. Low CI-Risk or high CI forecasts correspond to low model error, high risk or low CI fore-
casts correspond to a large variation of model error.  
 
 

In examining the results in Fig. 1, it is apparent 
that a straight line could be fit to this data. A high 
correlation value is not expected since the data 
spread increases with increasing CI-Risk.  

1.2 Background  

Although the Confidence Index was not developed 
until recently, the idea that errors in forecasts tend 
to correlate with certain meteorological features 
has been used extensively in the forecasting 
community for a long time. Researchers often use 
a few different methods, such as the spread be-
tween ensemble members for a predictor of model 
skill (Hoffman and Kalnay, 1983; Leith, 1974). 
However, the Confidence Index does not utilize 
any predictors derived from ensembles since the 
available forecast may not have come from an 
ensemble. Since models may handle certain 
weather scenarios poorly, there is a fluctuation in 
model skill over time. From day to day, the same 
model can have very different skill scores due to 
the changing of weather patterns. Analysis of fluc-
tuations in model skill can provide insight to the 
cause of these variations. If the causes for varia-
tions are related to meteorological flow or features, 
an assessment of the confidence can be found 
simply based on present features (Branstator, 
1986).  

 
1.3 Research Objective  

This Confidence Index has the potential to be a 
useful tool for decision makers and forecasters 
alike. It should be especially useful with WRF 
forecasts for incident meteorology. Additionally, by 
examining the CI values for each forecast, deci-

sions can be made regarding how many ensem-
bles to run and how much time should be spent on 
a forecast.  The usefulness of the CI hinges on the 
ability of this Confidence Index to perform as ex-
pected regardless of geographical location and 
model used to create the forecast. Hence, this re-
search seeks to answer the following questions. 

1. Can CI version 0.1 produce good output when 
used with other models? 

2. Can CI version 0.1 produce expected results 
when used over different regions? 

3. Can CI version 0.1 be improved by applying 
meteorological knowledge? 

The purpose of this study is to assess whether or 
not the Confidence Index concept has potential 
beyond assessing forecasts from the GEM over 
Eastern Canada. If so, work to improve the CI will 
continue by examining the rules involved. Since 
the CI was developed for use over a specific area, 
certain meteorological phenomena may not be 
properly accounted for. Hence, new rule develop-
ment will be important. Any possible improve-
ments to rules will need to be tested and new rules 
will be created to account for more climatological 
regions.  

 
2 PREVIOUS TESTING 
2.1 CI Calculations 

Kierstead and Pick performed preliminary tests to 
ensure that when used with real data, a distribu-
tion similar to Fig. 1 is produced. The original con-
ceptual version of CI included 15 rules, but prelim-
inary tests used only 5 of these. Problematic fea-
tures or predictors described by these rules in CI 



v0.1 included closed low pressure centers, strong 
and very weak pressure gradients, large wind di-
rection changes, and inconsistency between fore-
casts. Each rule affects both the CI and CI-Risk 
score.  Since the CI value requires further efforts 
to calculate and the two values are closely related, 
CI-Risk will be referred to henceforth. The Closed 
Low rule works by examining the pressure field for 
areas of lower pressure surrounded entirely by 
higher pressure. If the lower pressure meets the 
criteria, it is considered a closed low and will con-
tribute to a higher CI-Risk. The wind shift rule was 
designed to highlight areas of 500 hPa troughs/ 
fronts because these lead to a degraded forecast 
if mishandled. The rule should also have the ca-
pability to show the general location of the maxi-
mum wind shift. By examining the wind directions 
and comparing them to neighboring values, large 
differences in direction will cause the rule to penal-
ize the forecast.  

The Pressure Gradient rule handles potential fore-
cast errors that tend to occur near gradients. 
When the location of a strong gradient is incorrect, 
large errors will be found in the forecast, especially 
for winds. Similarly, models struggle in cases with 
very weak gradients. This rule was designed to tag 
strong and very weak gradients and their presence 
leads to a higher CI-Risk. Inconsistency is hig-
hlighted in a forecast by the consistency rule. This 
rule compares the 12-hr and 24-hr forecasts that 
are valid for the same time. A model that does not 
have consistent solutions between model runs 
tends to be less accurate. Using these rules, 
Kierstead and Pick ran the CI v0.1 algorithm on 
approximately one year of Canadian High-
Resolution Global Model forecasts over a 2000 x 
2000 km region in Eastern Canada.  

2.1.1 Verification Calculations 

With the CI-Risk scores calculated, a measure of 
model error was needed. Since observations can-
not be ingested into CI at this stage, a less than 
ideal method was employed. This was done by 
comparing the 500 hPa forecast pattern from the 
forecast to the same field for the model initializa-
tion, both valid at the same time. Although this 
method is not the most favorable, it does provide 
simple, quick assessment of model error. In the 
future, the verification process will be rebuilt to 
include multiple soundings at multiple levels.  

2.2 Statistical Multiple Regression Analysis 

Each problematic feature, or predictor contributes 
to the overall CI-Risk score, but some predictors 
are more influential than others. By conducting a 

statistical multiple regression analysis, different 
weights for each predictor can be established. The 
analysis was performed with the aid of Minitab. A 
regression equation was found by using a combi-
nation of variables from the CI rules that represent 
the presence and/or strength of a minimum gra-
dient, maximum gradient, closed low, wind direc-
tion variables, and consistency.  

By equating the response to model error, the va-
riables from the rules are the predictors. In order 
to achieve an accurate way of relating model skill 
to CI score, the regression equation weights each 
variable differently. The P score indicates whether 
or not the variable has a significant correlation with 
model error. The lower the P score, the higher the 
correlation, and P-values below 0.025 are consi-
dered statistically significant. A variety of different 
combinations of the predictors were used in the 
regression analysis. The combination that was 
most statistically significant was considered to be 
the best representation of the results. The closer 
the r-value is to one, the better these predictors 
relate to the forecast error. Then the data were 
plotted with model error versus the outcome of the 
regression equation. A regression line is fit to the 
plot of the data (presented in this paper as a blue 
line).  

From this we can examine the spread of the data 
and visualize possible problems with the CI algo-
rithm and its rules. As a result of the spreading of 
data with increasing CI-Risk (decreasing CI), when 
fitting the data to a regression line, a high r-value 
is not expected. Regression analysis can aid in 
analysis, but does not describe the shape of the 
distribution. Thus, a line of fixed slope (presented 
here as a thick black line) will show the upper 
bounds of where we expect the data to fall. Be-
tween this line and the x-axis is considered the 
envelope. Points that fall outside of this envelope 
indicate the Confidence Index incorrectly diag-
nosed the forecast and did not penalize it suffi-
ciently.  

Further analysis involving the residuals may be 
implemented to gain more concrete results. Since 
the residuals represent the distance between a 
data point and the regression line and also ac-
count for the direction a data point is from the line 
(above or below), data points falling above the 
regression line by a certain distance or higher can 
be excluded. An average can be calculated to 
quantify this.  

Results in Fig. 2 show good correlation between 
the CI value and the forecast error, providing a 
proof of concept for continuation of this work. 



 

 
Figure 2: Results from preliminary testing using the East Canada region with the Canadian model. 
Left: 12-hr forecasts, Right: 24-hr forecasts. The black line represents the top of the envelope; the 
blue line is the regression line.  
 

The trend of increasing maximum error with in-
creasing risk is visible in this data and the distribu-
tion seems consistent with the idealized case. As 
shown, there is a large difference between the 12-
hr forecasts and 24-hr forecasts. This shows that 
12 hours is not sufficient time for the forecast to go 
astray. Also notice the envelope line which depicts 
the allowable maximum error. Only three forecasts 
fall far above this envelope for the 24-hr forecasts, 
and these represent forecasts that the algorithm 
failed to assign low enough CI-Risk scores. 

3 PROCEDURE: VERSION 0.1 TESTED ON 
DIFFERENT REGIONS 

3.1 Data 

The CI algorithm runs on model data output at the 
500 hPa level, and is created to handle data from 
a variety of current models. The second test of 
version 0.1 was run on the Global Forecast Sys-
tem high resolution 12- and 24-hr forecasts dating 
from 2 May 2008 to 30 April 2009. The GFS was 
chosen over the WRF model because it is already 
used operationally by our customer and it provides 
a worldwide data set that allows testing for geo-
graphic locations beyond North America. A few 
days are missing from the dataset, but not enough 
to be statistically significant. Using a year’s worth 
of data will allow more accurate comparisons be-
tween this study and the previous.  

3.2 Regions 

In order to test the performance of version 1 of CI, 
the Confidence Index algorithm was run over mul-
tiple new geographical regions. For comparison 
purposes, a region over eastern Canada was 
created that corresponds to the area used in the 
previous study. Figure 3 shows the region used in  

 

the previous study and the region used in this 
study.  

 
Fig. 3: Previous study area in white, present 
study area outlined in orange. 

These regions could not be matched up perfectly 
due to differing map projections, the Canadian 
Model using a polar stereographic grid versus the 
GFS model’s latitude-longitude grid. Four of the 
new areas are located in the United States and 
were chosen based on a familiarity of model error 
tendencies associated with the effects of specific 
topography and oceans. Multiple regions depicted 
in Fig. 4 were chosen to gauge how well CI han-
dles different terrain, tropical systems, and data 
voids over the ocean. The Central region was 
created to examine relatively flat terrain with good 
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data availability and lack of oceanic influence. Two 
different areas were examined out west, the Rock-
ies and the West Coast. The main reason for in-
cluding the Rockies region is to insure CI works 
over complex elevated terrain. The region was 
centered to minimize overlap with the Central re-
gion.  The West Coast purposely includes ocean 
over the upwind portion of the domain and reach-
es into the Baja Peninsula for tropical storms as 
well as the highly active Pacific Northwest. To ob-
tain an even better idea of how CI handles tropical 
systems and the data void of the ocean, an area in 
the southeastern U.S. (Southeast) was also cho-
sen.  

We also tested CI in the South-Central Asia region 
where we hope the CI will be used. This area will 
show the effects of complex terrain, oceans, and 
poor data coverage. 

 
4 RESULTS 

The same analysis method used for the prelimi-
nary test over eastern Canada was used for the 
multi-regional results. In examining the plots of 
results, it is important to note the number of fore-
casts that fall significantly outside of the envelope, 
the r- value, and the overall distribution of fore-
casts.  

4.1 Regional Analysis 
4.1.1 Eastern Canada 

Results of this study from the region over eastern 
Canada are shown in Fig. 5. Two major differenc-
es exist between the previous test and the current 
results. Different models were used as well as dif-
ferent years.  

Upon visualizing the plots, the lack of spread in 
the 12-hr forecasts is apparent. This is a repeating 
occurrence, and is thought to be because the 
forecast had less time to degrade; forecasts are 
generally good and receive low risk scores. It is 
likely that the spread is mainly due to noise. Little 
difference exists between the 12-hr forecasts from 
the Canadian Model and GFS Model. The 24-hr 
forecasts definitely display greater differences and 
for this reason will receive more attention.  

The 12- and 24-hr Canadian and GFS model fore-
casts performed as expected, with a positive cor-
relation between model error and CI-risk. A few 
outliers exist in the data, indicated by forecasts 
falling above the black envelope line. The Cana-
dian 24-hr forecasts appear to have the greatest 
number of outliers, and contain three forecasts 
that fall well above the acceptable range. The 
general spread of the data is greater with the Ca-
nadian model as well-indicated by CI-Risk scores 
ranging from about 5 to 15. With the exception of 
outliers, it appears to fit the ideal results the best. 
However, when accounting for these outliers it 

Figure 4: Left to right, West Coast, Rockies, Central, and Southeast regions. 



seems the GFS 24-hr forecast fits closest to the 
ideal case. Examining the r-values can also show 
the spread of the data. High r-values indicate that 
the points tend to fall close to the regression line. 
As noted before, the ideal case is not expected to 
have a high r-value. Nonetheless, these r-values 
can help determine if forecasts are more clumped 

or spread out along and close to a line. In this 
case, the highest r-value 0.50 corresponds to the 
Canadian 24-hr forecast. It is interesting to note 
that for the GFS forecasts, the 12-hr forecasts 
scored higher than the 24-hr forecasts. However, 
this could be due to the fact that small CI-Risk val-
ues correspond with less variation of error.  
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Figure 5: Scatterplots for forecasts over Eastern Canada. Top: Canadian Model results: left, 
12-hr forecasts r = 0.41; right, 24-hr forecasts r=0.50. Bottom: GFS Model results: left, 12-hr 
forecasts r = 0.46, right, 24-hr forecasts r = 0.42. The black line represents the top of the 
envelope; the blue line is the regression line.  



4.1.2 US West Coast 

Summarized results for the West Coast region are 
found in Fig. 6. From the scatterplot, the expected 
trend is present with low model error correspond-
ing to low CI Risk, and high CI Risk indicating 
more variable error. Of all the regions tested, the 
results for the West Coast have the greatest varia- 

tion of CI Risk scores for both the 12- and 24-hour 
forecasts. In other words, more forecasts received 
high CI risk scores, and the majority of these fore-
casts fell below the envelope line. The 24-hr scat-
terplot shows many more forecasts above the 
envelope line; however none grossly exceed the 
envelope.  
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4.1.3 Central US 

Scatterplots of the results for the Central region 
are shown in Fig. 7. Error is low along with CI-Risk 
for the 12-hr forecasts, and forecasts tend to have 
little variation in CI-Risk scores. The distribution 
most closely resembles East Canada 12-hr scat-
terplots, and no significant outliers are present. 
The 24-hr forecasts have more spread and fewer 
forecasts fall above the envelope line. Only one 

forecast appears to be an outlier with a model er-
ror around 25. This forecast should have received 
a risk score of about 13 or higher, and hopefully 
new rules to be implemented will help correct this 
problem. R-values for the scatterplots seem to 
suggest that 12-hr forecasts are clumped close to 
a single point rather than scattered along and near 
the regression line. However, the differences be-
tween the r-values are rather small and may not 
be significant. 
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Figure 7: Scatterplots over Central United States. Left, 12-hr forecasts r=0.44; right, 24-hr fore-
casts r=0.49. The black line represents extent of the CI envelope and the regression line is 
blue. 

Figure 6:  Scatterplots for the US West Coast. Left, 12-hr forecasts r=0.62; right, 24-hr fore-
casts r=0.55. The black line represents extent of the CI envelope and the regression line is 
blue. 



4.1.4 US Rockies 

Results for the Rockies (Fig. 8) display the similar 
trend of the 12-hr forecasts showing significantly 
less spread than the 24-hr forecasts. Despite this, 
the 12-hr scatterplot still shows more variation in 
CI Risk than the Central region 12-hr forecasts. 
Both 12- and 24-hr scatterplots fit the ideal case 

well. A few points fall outside of the envelope, but 
they are still close to the envelope line. Examining 
the r-values between the 12- and 24-hr data have 
similar values and is thus inconclusive. However, 
when comparing r-values to different regions, the 
24-hr r-value of 0.57 is the highest of all the North 
America regions. 

 

 
 
Figure 8: Scatterplots for the Rockies. Left, 12-hr forecasts r=0.60; right, 24-hr forecasts r=0.57.  
The black line represents extent of the CI envelope and regression line is blue. 
 
4.1.5 Southeast US 

Results from the Southeast region in Fig. 9 show 
slightly different results than other regions. The 
trend of having 12-hr forecasts with low Risk 
scores and low error remains the same, but in 
terms of the distribution fitting the ideal model they 
differ greatly. The 12-hr forecast seems to fit the 
ideal model well and closely resembles the West 
Coast 12-hr scatterplot. On the contrary, the 24-hr 
scatterplot shows a poorer fit to the ideal model. 
There is a smaller spread in CI Risk with the ma- 

jority of forecasts earning a CI-Risk score above 6. 
Additionally, the forecasts that fall above the 
envelope line are clustered and tend to lie farther 
away from the line. It is possible that CI struggles 
more because of the lower latitude or because this 
region is more meteorologically active. Further-
more, no rule is in place to account for forecast 
errors caused by convection. By examining these 
forecasts that fall above the envelope, hopefully 
an origin for this error will surface and a new rule 
will be created for it. 
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Figure 9:  Scatterplots for the Southeastern U.S. Left, 12-hr forecasts r=0.63; right, 24-hr fore-
casts r=0.41. The black line represents extent of the CI envelope and the regression line is 
blue. 



4.1.6 South-Central Asia 

Results for the South-Central Asia region are also 
rather different than previous regions examined. In 
Fig.10, one can see that forecasts in this area tend 
to be good with low error. Features that the CI is 
programmed to find are not strongly present in 
these forecasts, as indicated by low CI-Risk 
scores. All points fall below this envelope. Despite 

the apparent differences between these and fore-
casts from other regions, correlations are similar to 
that of other regions. Some of this small spread 
may be caused because the lack of data in the 
region failed to pick up on errors occurring in data 
voids so errors were missed. Also, it appears this 
area is not very meteorologically active. 

 

 
 
Figure 10:  Scatterplots for South-Central Asia. Left, 12-hr forecasts r=0.52; right, 24-hr forecasts 
r=0.48. The black line represents extent of the CI envelope and the regression line is blue (mostly 
hidden beneath points). 
 
 
 
4.2 Equations and Coefficients 

In addition to using the linear regression analysis to determine r-values, portions of the regression equa-
tion can be combined for each region to create an average regression equation that is universal. Using 
the predictors and model verification error, a regression equation of the form below is created where 
FIELD_DIFF-VER is the verification error, ‘a’s represent constants, and GRADIENT_MIN, GRA-
DIENT_MAX , MAXCLOSEDLOW  and CONSISTENCY represent predictors. 

 
FIELD_DIFF-VER = a1 + a2 GRADIENT_MIN + a3 GRADIENT_MAX + a4 MAXCLOSEDLOW 

+ a5 CONSISTENCY 

 
By creating an average value for each coefficient, an average linear regression equation was created for 
both 12-hr (Table 1), and 24-hr (Table 2) forecasts. Coefficients are indicated as an ‘a’ in Table 1 and ‘b’ 
in Table 2. 
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Table 1: Results for 12hr_FIELD_DIFF-VER 
 

Region a1 
coefficient 

a2 
GRAD_MIN 

a3 
GRAD_MAX 

a4 
MAXCLOSEDLOW 

8-NEIGHBOUR 

a5 
CONSISTENCY r 

SC Asia  
(GFS data) 3.2073 -0.13091 -0.0269 0.0079 0.49939 0.62 

Central US  
(GFS data) 3.3979 -0.01017 0.013109 -0.05055 0.26951 0.44 

East Canada 
(GFS data) 2.4458 -0.06208 0.019082 0.04408 0.27029 0.46 

US Rockies 
(GFS data) 1.4569 0.09418 0.027454 0.0488 0.35459 0.60 

S-E US 
(GFS data) 2.2914 -0.14345 0.003923 0.09048 0.44517 0.63 

US West Coast 
(GFS data) 2.008 0.10205 0.023273 -0.04695 0.40729 0.62 

East Canada 
(GRIB_RGEM) 4.35 -0.168 0.0419 0.168 0.114 0.41 

Average Coef. 2.736757 -0.045483 0.014549 0.037394 0.337177 0.54 

 
 
Table 2: Results for 24hr_FIELD_DIFF-VER 
 

Region b1 
coefficient 

b2 
GRAD_MIN 

b3 
GRAD_MAX 

b4 
MAXCLOSEDLOW 

8-NEIGHBOUR 
b5 

CONSISTENCY r 

SC Asia 
(GFS data) 3.58 -0.103 -0.0598 0.0683 0.674 0.48 

Central US 
(GFS data) 3.69 -0.126 0.0424 0.104 0.429 0.49 

East Canada 
(GFS data) 5.31 -0.304 0.0221 -0.0345 0.344 0.42 

US Rockies 
(GFS data) 3.27 -0.247 0.0586 0.118 0.465 0.57 

S-E US 
(GFS data) 4.66 -0.217 0.0094 0.181 0.454 0.41 

US West 
Coast 

(GFS data) 
4.25 -0.132 0.0367 -0.118 0.619 0.55 

East Canada 
(GRIB_RGEM) 3.54 -0.216 0.141 0.477 0.264 0.50 

Average Coef. 4.043 -0.192 0.036 0.114 0.464 0.49 



An overall average is found by using the average coefficients for both the 12- and 24-hr, yielding the fol-
lowing formula. These coefficients are fixed when performing the regression. 

  

FIELD_DIFF-VER = 3.390 − 0.119 GRADIENT_MIN + 0.025 GRADIENT_MAX 

+ 0.076 MAXCLOSEDLOW  + 0.401 CONSISTENCY 

Using this specific equation, the CI algorithm was run again over each region to compare results for this 
fixed average equation versus varying equations for each region. These results are given in Table 3. 

 
Table 3: Correlation Coefficients for each domain using the Equation with Fixed Coefficients from 
both the 12 and 24-hr Forecasts 
 

Region r – from average - 12-hr r – from average - 24-hr 

SC Asia (GFS data) 0.49 0.44 

Central US (GFS data) 0.43 0.48 

East Canada (GFS data) 0.46 0.42 

US Rockies (GFS data) 0.59 0.56 

S-E US (GFS data) 0.61 0.40 

US West Coast (GFS data) 0.61 0.54 

East Canada (GRIB_RGEM) 0.35 0.43 
 

Similarly, the CI algorithm was run again over each region using the average coefficients based on the 
24-hr results. The results are given in Table 4.  

 
FIELD_DIFF-VER = 4.043 − 0.192 GRADIENT_MIN + 0.036 GRADIENT_MAX 

+ 0.114 MAXCLOSEDLOW + 0.464 CONSISTENCY 

 
Table 4:  Correlation Coefficients for each domain using the Equation with Fixed Coefficients from 
only the 24-hr Forecasts 

Region r – from average - 12-hr r – from average - 24-hr 

SC Asia (GFS data) 0.47 0.42 

Central US(GFS data) 0.43 0.49 

East Canada(GFS data) 0.46 0.42 

US Rockies(GFS data) 0.59 0.56 

S-E US(GFS data) 0.60 0.40 

US West Coast(GFS data) 0.60 0.54 

East Canada(GRIB_RGEM) 0.36 0.45 

Correlation values and regression equations using this Fixed Coefficients method are similar to using re-
sults achieved using the multiple regression analysis. The coefficients are a little lower for the SC Asia 
and East Canada data sets, but this is not a concern for SC Asia due to the small spread in the data. East 
Canada likely has a lower coefficient because of model differences. 



4.3 Further Work: New Rules and  
Modifications 

In order to improve CI v0.1 algorithms and ensure 
it will be useful over many regions, the interwork-
ing of the five individual rules was examined. From 
a meteorological perspective, areas for potential 
improvement were discovered. In addition, less 
than ideal CI performance in the southeastern re-
gion of the U.S. points to the need for a convection 
rule. The following is a brief description of modifi-
cations to certain rules and the new rules created.  

 
4.3.1 Closed Low 

Another version of the previous closed low rule 
has been created in hopes of capturing short 
waves, tropical systems that typically have a weak 
pressure signature, and accounting for system 
strength and size. To undertake this, instead of 
using the pressure field to find low systems, the 
new version will examine the relative vorticity field. 
This algorithm is designed to find areas of vorticity 
that exceed a given threshold. Once it finds these 
areas, it will search the surrounding neighbors for 
values that exceed the threshold as well. As long 
as the algorithm discovers that many neighbors do 
exceed the threshold, it will continue to examine 
neighbors farther and farther away from the point 
of interest. This allows the algorithm to only count 
large areas of relative vorticity. The maximum val-
ue of relative vorticity that lies within an area will 
also be noted.  

4.3.2 Wind Change 

The purpose of the original rule is designed to 
highlight areas of troughs and should be able to 
determine if the wind shift is downwind or upwind 
of a central point. An analysis was performed to 
test whether or not the algorithm would choose the 
wind shift associated with a 500hPa trough. Re-
sults showed that the algorithm could not correctly 
identify the most significant wind shift, and there-
fore a new version of this rule was created. This 
new version uses wind vectors instead of wind 
direction when comparing the winds at one grid 
point to another. It also uses averaging over larger 
areas to resolve wind shifts over larger areas in-
stead of small, negligible differences between only 
a few wind vectors.  

4.3.3 Geostrophic Wind  

Working along with the wind change rule to high-
light troughs/surface fronts is the newly created 
geostrophic wind rule. However, the key feature of 
this rule is that maximum magnitudes of geos-

trophic wind tend to mirror upper level jets. This is 
especially useful since wind forecasts have a 
greater chance of failing in the vicinity of jets. The 
rule works by calculating the geostrophic wind 
field, then calculates the magnitude for each geos-
trophic wind vector. Similar to the method used in 
the Closed Low Rule, it picks out the maximum 
value, and also searches for values that exceed a 
specific threshold. After finding these significant 
values, all the values of surrounding neighbors are 
checked for threshold exceedance. In this way, the 
large areas of high geostrophic wind magnitudes 
are revealed.  

4.3.4 Convection   

In order to account for poor forecasts due to con-
vection, a rule was created to measure the amount 
of convection based on the lifted index that should 
be present at the forecast valid time. It uses the 
temperature and moisture variable at 500hPa and 
the temperature, pressure, and moisture variable 
at the lowest level. From these, a difference in vir-
tual temperature, ∆T, between the two levels is 
found. The ∆T values are summed over the entire 
area, and the number of grid points that have posi-
tive ∆T values will be used to assess the Forecast 
Risk of the situation due to convection. Since data 
from only a few levels can be used for this calcula-
tion, this rule cannot account for convective inhibi-
tion. Hopefully this does not result in an over pre-
diction of convection, but future versions will want 
to include another level if possible. Using only two 
levels also means only surface based convection 
is analyzed. Furthermore, it is uncertain how this 
rule will handle tropical convection that is typically 
characterized by small convective available poten-
tial energy values.  

 
5 SUMMARY AND CONCLUSIONS 

Results were found to be consistent between dif-
ferent forecast periods, years, forecast models, 
and regions. When comparing the 12 to 24-hr 
forecasts, there is a significantly higher error and 
higher CI-risk present for the 24-hr forecasts. 
There are differences between model and year, 
but these tend to be small. It appears that the 
GFS-Hires forecasts did better than the Canadian 
model with less points falling above the envelope. 
With consistency between models, CI is expected 
to work well with the WRF model. When varying 
regions over North America, generally small differ-
ences were found. The West Coast and southeast 
regions displayed the highest errors indicated by a 
large number of points above the envelope line. 
Since these regions cover a good deal of water, 



the upstream data void is a probable cause of this 
error. For the southeast, that performed the worst 
of the two, convection could be to blame along 
with its proximity to the equator. This led to the 
development of the convection algorithm, but a 
low latitude rule may be needed as well. Despite 
having little data and dramatic topography, the 
model seemed to do well over the Asia study area. 
However, the lack of data could mean the errors 
that occurred were not captured. This envelope 
used in the analysis appears to be similar for each 
data set, and appears to represent the maximum 
likely error for a specified confidence index value. 
Upon performing the fixed average regression 
analysis, it was discovered that this method is not 
significantly worse than using an individualized 
multiple regression specified for forecast period, 
region and model.  

These results reveal that the Confidence Index 
works properly over different regions and models. 
In addition, a CI formula can be defined through a 
universal method of regression using fixed coeffi-
cients. This should work properly regardless of 
forecast period, region, or model. This Confidence 
Index appears useful, but does require some addi-
tional work with more algorithms needed to ac-
count for areas outside of the mid-latitudes.  
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