Update on WRF+ in NCEP Operations

Geoff DiMego, Zavisa Janjic, Tom Black, Eric Rogers, Matt Pyle, Jun Du, Hui-Ya Chuang, Brad Ferrier, Dusan Jovic, and Binbin Zhou

Geoff.DiMego@noaa.gov
301-763-8000 ext7221
21 June 2011
TOPICS

- Condensed Chronology with lots of links, oh boy!
- Unsolicited Endorsement
- Unified Post Processor
- HiResWindow
- Short Range Ensemble Forecast
- North American Mesoscale NEMS-NMMB
- Future Plans: NARRE & HRRRE
Chronology of NMM & ARW in Operations at NCEP

- **Pre-WRF NMM at NCEP**
 - May 2000: nonhydrostatic option released in upgrade to NCEP’s workstation Eta
 - February 2002: HiResWindow runs upgraded to use 8 km NMM replaces 10 km Eta (hydrostatic)
 - February 2002: On-Call Emergency Response begins using 4 km NMM to support HYSPLIT
 - May 2003: Fire Weather / IMET Support runs implemented using 8 km NMM, suspended 2006-2011

- **WRF ARW&NMM at NCEP**
 - September 2004: HiResWindow the first operational WRF v1.3 implementation: 8 km NMM & 10 km ARW replace single 8 km pre-WRF NMM
 - June 2005: HiResWindow upgraded to 5.1 km NMM & 5.8 km ARW with explicit convection
 - December 2005: Short Range Ensemble Forecasting (SREF) system adds WRFv2.0: 3 members each of 40 km NMM & 45 km ARW
 - September 2007: HiResWindow expanded domain, upgrade to WRFv2.2.1 4 km NMM + 5.1 km ARW
 - October 2009: SREF upgrade to WRFv2.2.1, bias corrected, add 2 members each, and increase resolution to 32 km NMM & 35 km ARW
 - October 2009: SREF upgrade to WRFv2.2.1, bias corrected, add 2 more members each, and increase resolution to 22 km NMM & 25 km ARW

- **Other NMM & ARW at NCEP**
 - April 2004 thru present: for SPC and the NSSL/SPC Spring Program, expanding & evolving routine daily developmental runs of ~4 km WRF-NMM with explicit convection
 - June 2006: first NAM runs using 12 km WRF-NMM v2.1 & GSI replaces Eta & its 3dvar
 - May 2007: first Hurricane WRF (HWRF) using WRF-NMM v2.0; 27 km outer with moving 9 km inner nest; annual updates
 - March 2008: NAM uses NMM w/IJK array index
 - December 2008: final major NAM upgrade to v2.2.1 WRF-NMM , WPS replaces WRF-SI
 - August 2011: first NAM use of NEMS-NMMB with 6-3 km fixed nests and 1.33-1.5km placeable Fire Weather/IMET Supporting runs reinstated
 - October 2011: Rapid Refresh using WRF-ARW v3.3 & GSI, on expanded domain replaces non-WRF RUC & its 3dvar.
 - November 2011: SREF upgrade to WRFv3.3, add 2 more members each, and increase resolution to 22 km NMM & 25 km ARW

- **March 2011**: HiResWindow upgrade to WRFv3.2 add Guam runs, expand PR, add bufr sndgs +...
Recommended Tutorials (all of ‘em!)

- **GSI Community Tutorial** a few openings are still left for the 2011 summer GSI Tutorial scheduled from June 29 to July 1 held at the NCAR Foothills Laboratory, Boulder, Colorado.
 - The tutorial will be a two and half day event (with the last half day optional), consisting of both lectures and hands-on practical sessions. The lecturers are invited from various GSI development/support teams including NCEP/EMC, NASA/GMAO, NOAA/GSD, NCAR/ MMM and DTC. The practical sessions will provide essential skills to run GSI system with basic and advanced implementations.
 - Participants can choose to attend only lectures or entire event (lecture and practical sessions) for registration.
 - Please visit the web site above for more information.
 - If you have any questions, please send email to gsi_help@ucar.edu

- **WRF User’s Tutorials** July 11-22, 2011
- **WRF Tutorial for Hurricanes** TBD (last held April 26-29, 2011)
- **DTC Ensemble Testbed Workshop/Tutorial** TBD (last held August 18-19, 2010)
NCEP’s Unified Post-Processor (UPP)

• Generates diagnostic quantities in model’s computational domain, i.e. prior to any horizontal or vertical interpolation.

• Runs on all NCEP atmospheric models: RUC/RAP, NAM (NMM/NMMB), HiResWindow (ARW & NMM), SREF (Eta, RSM, ARW & NMM), Hurricane-WRF, GFS, GEFS, and CFS.

• Produces myriad of products including simulated radar reflectivity and satellite imagery & radiances.
NCEP, DTC and the UPP

• NCEP and DTC are transitioning to Unified Post Processor (UPP) from WPP this summer.

• DTC made a beta release of portable UPP v0.5 in April 2011.

• UPP retains existing WPP capability while expanding beyond to offer global application and many new derived fields.
New Fields in UPP in 2011

- New fields in UPP include isentropic levels, dynamical tropopause, fire weather, wind energy, as well as AMSR-E simulated IR and microwave products.
UPP Future Plan

• DTC is planning to make an official release of UPP in June 2011.

• NCEP recently updated UPP to include capability to write Grib2 output directly using parallel IO. NetCDF4 is coming next.

• DTC is planning to include Grib2 output capability as well as capability to process NMMB output in its 2012 UPP release.
March 2011 Upgrade of HiResWindow

- Upgrade NMM & ARW to WRF v3.2 with improved passive advection in both cores
- Add Guam runs
- Add product generation: High Resolution Ensemble Forecast (HREF), BUFR, and SPC hourly max, fire wx and 80m agl fields.

- Now on NOMADS & ftp server (on NOAAPort in August)
- Daily displays of these runs can be seen at:
 - http://mag.ncep.noaa.gov/NCOMAGWEB/appcontroller
 - http://www.emc.ncep.noaa.gov/mmb/mmbpll/nestpage/

- Matt Pyle’s full CONUS NMM runs [/00 or /12] for SPC can be seen at http://www.emc.ncep.noaa.gov/mmb/mpyle/cent4km/conus/
HiResWindow WRF v3.2 Configurations

(No Parameterized Convection)

<table>
<thead>
<tr>
<th>Dynamic Core</th>
<th>WRF-NMM</th>
<th>WRF-ARW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Spacing</td>
<td>4.0 km</td>
<td>5.1 km</td>
</tr>
<tr>
<td>Vertical Domain</td>
<td>35 levels 50 mb top Sigma-Pressure</td>
<td>35 levels 50 mb top Sigma</td>
</tr>
<tr>
<td>PBL/Turbulence</td>
<td>MYJ</td>
<td>YSU</td>
</tr>
<tr>
<td>Microphysics</td>
<td>Ferrier</td>
<td>WSM3</td>
</tr>
<tr>
<td>Land-Surface</td>
<td>NOAH</td>
<td>NOAH</td>
</tr>
<tr>
<td>Radiation (Shortwave/Longwave)</td>
<td>GFDL/GFDL Lacis-Hansen/Fels-Schwartzkopf</td>
<td>Dudhia/RRTM</td>
</tr>
<tr>
<td>Advection of Passive Variables</td>
<td>Conservative Positive Definite</td>
<td>Monotonic Positive Definite</td>
</tr>
</tbody>
</table>
HiResWindow Product Upgrades

• Add / enhance product generation:
 – Add generation of BUFR output (hourly point forecast soundings) for both cores
 – Produce High Resolution Ensemble Forecast (HREF) products (Du 2004).
 – Add simulated radar echo top and hourly maxima of select severe weather forecasting fields for SPC
 – Add PBL height and other fields for Fire Weather IMET support
 – Add 80m agl (above ground level) temp, wind, moisture and pressure for wind energy sector.
HiResWindow 2010 Upgrade
QFP Test Results Summary

• QPF stats show:
 – NMM: small improvement (except at .01”) in cold season testing, but a big improvement in the warm season especially reduced bias (but still too large). HPC is happy, but SPC is mostly unhappy due to suppressed extrema due to passive advection change.

 – ARW: neutral impact for the cold season, and a more significant positive impact at higher thresholds in the warm season.
HiResWindow 2010 Upgrade
Fcast-vs-Obs Test Results Summary

• Upper air stats:
 – NMM shows big improvement in warm season, little impact in cold season.
 – ARW shows big improvement in cold season, smaller improvement in warm season.

• Surface stats:
 – NMM shows improved 2m T, 10 m winds for cold season, West & AK regions.
 – ARW cold season impact more mixed - distinctly warmer 2 m temperatures West & AK.
 – Warm season impacts are more muted, daytime max 2 m T generally improved (warmer) for ARW.
Plans For 2012 HiResWindow

• Use Guam forecast as first guess for RTMA
• Upgrade ARW to Version 3.3
• Replace NMM with NMMB
• Some or all of the following:
 – Increase resolution to ~2 km
 – Expand to full CONUS – new schedule:
 • CONUS, Hawaii & Guam at 00z and 12z
 • Alaska, Puerto Rico-Hispaniola at 06z and 18z
 – Improve Initialization of HiResWindow runs
 • GSI using all available data & mini-NDAS
 • GSI adapted specially for Level II 88D winds
 • Digital filter with Level II 88D reflectivity (ala RUC/RR)
 – Start generating HRRRE-TL [Time Lagged]
Short Range Ensemble Forecast (SREF) System

- Common ensemble product generator
- Four-per-day runs since July 2006
- Now on NOMADS & ftp server
- Routine displays etc. are available at:
 - http://www.emc.ncep.noaa.gov/mmb/SREF/SREF.html
 - http://mag.ncep.noaa.gov/NCOMAGWEB/appcontroller
- Various Displays of ensemble BUFR soundings
 - http://www.emc.ncep.noaa.gov/mmb/srefmeteograms/sref.html
A comparison between the current and upgrade

<table>
<thead>
<tr>
<th></th>
<th>Current</th>
<th>2011 Upgrade</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>21 members</td>
<td>21 members</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>4 models [5 NMMv2.2, 5 ARWv2.2, 5 RSM, 6 Eta]</td>
<td>3 models [7 NMMv3.3, 7 ARWv3.3, 7 NMBB]</td>
<td>Toward NEMS modeling framework and use newest model version</td>
</tr>
<tr>
<td>Resolution</td>
<td>32km/35km</td>
<td>22km/25km</td>
<td>Resolve more detailed spatial features</td>
</tr>
<tr>
<td>Control IC analysis</td>
<td>NDAS and GFS</td>
<td>NDAS, GFS and RAP</td>
<td>Increase IC diversity</td>
</tr>
<tr>
<td>IC perturbation</td>
<td>Some with regional Breeding (smaller scale), and some with global ETR (larger scale) perturbations</td>
<td>All with “blend” of larger-scale ETR and smaller-scale regional Breeding perturbations</td>
<td>Improve IC perturbation</td>
</tr>
<tr>
<td>Physics perturbation</td>
<td>Multi-physics</td>
<td>Multi-physics</td>
<td>See Tables</td>
</tr>
<tr>
<td>Stochastic physics parameterization</td>
<td>No</td>
<td>New</td>
<td>Improve physics diversity in storm scale</td>
</tr>
<tr>
<td>Precipitation bias correction</td>
<td>No</td>
<td>New</td>
<td>Improve precipitation forecasts</td>
</tr>
</tbody>
</table>
2011 SREF Physics Diversity
Getting help from DTC & DET

<table>
<thead>
<tr>
<th></th>
<th>NMMEB (22km)</th>
<th>WRF NMM (22km)</th>
<th>WRF ARW (25km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control+ 1st Pair</td>
<td>NAM</td>
<td>NAM</td>
<td>NCAR</td>
</tr>
<tr>
<td>2nd Pair</td>
<td>GFS</td>
<td>HWRF</td>
<td>RAP</td>
</tr>
<tr>
<td>3rd Pair</td>
<td>Stochastic?</td>
<td>NCAR?</td>
<td>NMM?</td>
</tr>
<tr>
<td></td>
<td>(WSM6? Older version of Ferrier?)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
New Canadian Partnership

• North American Ensemble Forecast System (NAEFS) will be expanded to include a limited-area regional ensemble (called NAEFS_LAM): combining 21-member NCEP SREF with 20-member MSC regional ensemble (which will be operational in Summer 2011) for better ensemble products.
North American Mesoscale (NAM)

- Now on NOMADS & ftp server

- NAM / WRF-NMM Displays etc. are available at:
 - http://www.emc.ncep.noaa.gov/mmb/mmbpll/opsnam/
 - http://mag.ncep.noaa.gov/NCOMAGWEB/appcontroller

- NAM Forecast Meteograms
- NAM Precipitation Type Meteograms
- NAM Forecast Soundings
- NAM Convective Forecasting Page
- Hourly National Precipitation Analyses
August 2011

NAM Upgrade

Current NAM
- WRF-NMM (E-grid)
- 4/Day = 6 hr update
- Forecasts to 84 hours
- 12 km horizontal grid spacing

New NAM
- NEMS based NMMPB
- B-grid replaces E-grid
- Parent remains 12 km to 84 hr
- Four Fixed Nests Run to 60 hr
 - 4 km CONUS nest
 - 6 km Alaska nest
 - 3 km HI & PR nests
- Single placeable 1.33 km or 1.5 km FireWeather/IMET/DHS run to 36 hr
Dots represent water points Domain is upper Chesapeake Bay

12 km Terrain

4 km Terrain
Dots represent water points. Domain is Chesapeake Bay.

4 km Terrain

1 km Terrain
All boxes represent ESMF components.

Below the first dashed line, the source codes are organized by the model developers.

NEMS Component Structure

MAIN

NEMS

EARTH(1:NM)

Ensemble Coupler

Ocean

Atm

Ice

NEMS

Ensemble Coupler

NEM LAYER

NMM

GFS

FIM

ARW

Nest Domains(1:ND)

Dyn

Wrt

Dyn

Wrt

Dyn

Wrt

Dyn

Wrt

Dyn

23

common physics layer

Phy

Phy

Phy

Phy

Phy
NOAA Environmental Modeling System (NEMS)

Nesting in NMMB (courtesy Tom Black)

• Static, 1-way interaction but boundaries are fed by the parent every parent time step during the integration
• Unique sets of processors are assigned to each domain to optimize the balance of work and minimize the clock time required to run (not possible in WRF)
• While the nests have to be ‘grid-associated’ with their parent, any integer parent-to-nest factor can be used
• Next steps: movable then two-way interactive
Proportional expense of high-resolution nesting in NAM parallel

1.5 km sample Alaska FireWx nest 5/29 or 17%

6 km Alaska nest 3/29 or 10%

12 km parent 5/29 or 17%

4 km CONUS 13/29 or 45%

3 km PR-Hisp 1/29 or 3%

3 km Hawaii 2/29 or 7%
GSI Upgrades Related to NAM

Global upgrade May 2011
Faster code (~9%), improved optimization and additional options
Recomputed background errors
Limit moisture to be >= 1.e-10 in each outer iteration and at the end of analysis
Locate buoys at 10 m (from 20 m)
Ambiguous vector qc for ASCAT data
Satellite radiance related changes
 Update to radiative transfer model - CRTM 2.0.2
 Inclusion of Field of View Size/Shape/Power for radiative transfer
 Relax AMSU-A Channel 5 QC
Remove down weighting of collocated radiances
Inclusion of uniform (higher resolution) thinning for satellite radiances
Stratospheric satellite
 Improved OMI QC
 Removal of redundant SBUV/2 total ozone
 Retune SBUV/2 ozone ob errors
 Inclusion of SBUV from NOAA-19

New ob sources for NAM August 2011
New conventional obs
 - MESONET ps, T, q (winds already used)
 - ACARS moisture (WVSS-II)
 - MAP Profiler winds
 - RASS Profiler Tv
 - WINDSAT & ASCAT ocean winds (from scatterometer)
New unconventional obs
 - Satellite Radiances
 • AMSUA from aqua & NOAA19
 • HIRS4 & MHS from NOAA19
 • IASI from METOP-A
 - Refractivity
 • GPS radio occultation
Changes to the NAM Data Assimilation System (NDAS)

• First guess at T-12 reflects relocation of tropical cyclones
• Use of 1/12th deg SST (RTG_SST_HR) in place of ½ deg
• GSI updates 2 m temperature & moisture and 10 m winds with portion of 1st layer correction
• Updated background errors for NMMB
• 5X divergence damping in NMMB in NDAS only
NDAS First Guess vs RAOBs

March 2011

Black/Solid = Opnl

Red/Dash = Parallel
Scaled down BMJ convection for NMMB nests
(Matt Pyle for AK)

• Different model forecast customers interpret high-resolution guidance differently (literal vs. qualitative)
• With the NMMB implementation in NAM, an effort is being made to partially satisfy both camps.
• New scaling factor in the BMJ allows for relaxation toward moister profiles in finer grid-spacing runs:
 – Smaller modification of thermodynamic profiles
 – Goal is to improve QPF performance in nests without destroying fine-scale forecast structure
6 km NMMB nest
48 h total precip ending 20100722/00Z

w/o parameterized convection
Max precip = 4.91”

w/ scaled down BMJ convection
Max precip = 3.39”
Various mean cyclone errors for operational NAM (green) versus NAMX parallel (blue) for the 7-month time period from 00z October 1, 2010 to 18z April 30, 2011

Number of forecast cases for each forecast range, Grid 221

<table>
<thead>
<tr>
<th>hrs</th>
<th>00</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>60</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAM</td>
<td>1421</td>
<td>1145</td>
<td>443</td>
<td>213</td>
<td>103</td>
<td>51</td>
<td>27</td>
</tr>
</tbody>
</table>
Verification
Cloud vs METAR
Visibility verification over AK
1 Sep 2010 to 1 Jan 2011
Hurricane Earl near Puerto Rico

12 km NMMB parent

3 km Puerto Rico nest
MD Backdoor Coldfront in 1.33km Nest

May 2010
27/16Z to 28/12Z
This page will show selected fields from the most recent 00z, 06z, 12z, and 18z NAM Parallel High Resolution "Fire Weather" nested run. This nest runs inside either parallel NAMX CONUS or Alaska nest. It runs to 36-h and has a resolution of 1.333 km (if in CONUS) or 1.5 km (if in Alaska).

During parallel testing the domain will move around to test this capability over different regions.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Most recent 00z Run</th>
<th>Most recent 06z Run</th>
<th>Most recent 12z Run</th>
<th>Most recent 18z Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haines Index</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ventilation Rate</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Transport Wind, Terrain Height</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PBL Height</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1-h Minimum Relative Humidity, 10-m Wind</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sea-level Pressure, 1-h Accumulated Precip, 10-m Wind</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1-h Accumulated Convective Precip, 10-m Wind</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Categorical Precipitation Type</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Composite Radar Reflectivity, 10-m Wind</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1000 m AGL Radar Reflectivity, 10-m Wind</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Shelter (2-m) Temperature, 10-m Wind</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Shelter (2-m) Relative Humidity, 10-m Wind</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Terrain Height, 10-m Wind</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Total Column Condensate</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>925 mb Height, Wind</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>850 mb Height, Temperature</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>700 mb Height, RH</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>500 mb Height, Wind</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>250 mb Height, Wind</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>250 mb Wind Speed</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
NOAA/ARL’s HYSPLIT Dispersion Model

- Wild-fire smoke applications driven by NAM, NAM nests & FireWx IMETSupport runs via NOAA/ARL’s READY-testbed site

- Example for March 11, 2011 fires in Central OK: Harrah and Chatow counties
2014-2015

North American Rapid Refresh ENSEMBLE (NARRE)

- NEMS-based NMMB/ARW models & GSI analysis
- Common NAM parent domain at 10-12 km
- Initially ~6 member ensemble made up of equal numbers of NMMB- & ARW-based configurations
- Hourly updated with forecasts to 24 hours
- NMMB & ARW control assimilation cycles with 3 hour pre-forecast period (catch-up) with hourly updating
- NAM & SREF 84 hr forecasts are extensions of the 00z, 06z, 12z, & 18z runs.
High Resolution Rapid Refresh ENSEMBLE (HRRRE)

- Each member of NARRE contains
 - 3 km CONUS and Alaskan nests
 - Control runs initialized with radar data
- Positions NWS/NCEP/ESRL to
 - Provide NextGen Enroute AND Terminal guidance
 - Provide PROBABILITY guidance
 - Improve assimilation capabilities with radar & satellite
 - Tackle Warn-on-Forecast as resolutions evolve towards ~1 km
- NAM nests are extensions of the 00z, 06z, 12z & 18Z runs.
- HRRRE subsumes the current experimental VSREF
- Control members likely to make up core of Analysis of Record

Both NARRE and HRRRE Require Bigger NCEP Computer
North American Rapid Refresh

Ensemble Time Lagged (NARRE-TL)

[courtesy of Binbin Zhou]

Example: Ensemble member combination for 06th cycle run

4 NAM cycles, weighted 0.7, 0.5, 0.3, 0.1, respectively

6 RAP cycles, weighted 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, respectively

Forecast range extends to 12 hr with extension of RUC/RAP forecasts to 18 hr

NAM cycles always older than RAP so NARRE-TL gives more weight to RAP
High Resolution Rapid Refresh Ensemble Time-Lagged (HRRRE-TL)

- Example: Ensemble member combination for 06Z cycle run
 - 4 NAM-nest cycles, weighted 0.7, 0.5, 0.3, 0.1, respectively
 - 4 HRW-ARW cycles, weighted 0.7, 0.5, 0.3, 0.1, respectively
 - 4 HRW-NMM cycles, weighted 0.7, 0.5, 0.3, 0.1, respectively
 - 4 Pyle-SPC cycles, weighted 0.7, 0.5, 0.3, 0.1, respectively
 - 6 HRRR cycles, weighted 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, respectively

Forecast range could be extended beyond 12 hr without HRRR

Like VSREF, soon-to-be-known-as the NARRE-TL for Time Lagged NARRE
BACKUP SLIDES
Some Recommended Talks

- **2.1** Hurricane WRF: Testing activities and Community Support by the DTC. **Ligia Bernardet**, NOAA/ESRL and University of Colorado/CIRES, Shaowu Bao, Timothy Brown, Donald Stark, Mrinal Biswas, Laurie Carson, and Christopher Harrop

- **3.3** Simulating lake water surface temperature for USCONUS. **Yihua Wu**, NOAA/NCEP

- **3.5** Impact of land processes on WRF precipitation process. **Vince Wong**, NOAA/NCEP, and Michael Ek

- **4.3** Overview of the NOAA Environmental Modeling System (NEMS). **Bill Lapenta**, NCEP, Mark Iredell and Tom Black

- **7B.2** Community GSI System and its role in bridging research and operation data assimilation community. Xiang-Yu Huang, NCAR, **Ming Hu**, Hui Shao, and Don Stark

- **7B.8** Assimilating cloudy radiances with MLEF using NCEP Operatioal HWRF system: A case study. Man **Zhang**, CIRA/CSU, Milija Zupanski, Min-Jeong Kim, and John Knaff

Some Recommended POSTERS
2:30 P.M. – 5:30 P.M, Wednesday, June 22

• P8 Sensitivity of Asymptotic Behavior of Idealized Tropical Cyclone Intensification to Physics: ARW vs HWRF. Michelson, Sara, University of Colorado/CIRES and NOAA/ESRL and Jian-Wen Bao
• P17 Testing of a wind farm parameterization in the WRF-ARW as verified against tower and surface data. Olson, Joseph B., NOAA-ESRL, Anna Fitch, and John M. Brown
• P32 The DTC Objective Evaluation Performed During the HWT 2011 Spring Experiment. Jensen, Tara, NCAR, Steve Weiss, Mike Coniglio, Fanyou Kong, Michelle Harrold, Lisa Coco, Jack Kain, Adam Clark, Patrick Marsh, Brian Etherton, Israel Jirak, Chris Melik, Matthew Pyle, and Ming Xue
HiResWindow Upgrade

- Microphysics code change – background
 - HPC noticed a persistent (and bogus) precipitation band
 - The band was in **both** the opnl and parallel NMM runs

- Quick insight from Brad Ferrier led to a test modification of the cloud microphysics allowing ice nucleation to begin at warmer temperatures: T_ice_init changed from -15 C to -5 C
- This change worked perfectly, eliminating the specific pathology, and had very small forecast impact on other cases.
Sample 1 hr Precip Forecasts at 18 hr

NMM Guam from 8 Feb 00z

ARW Guam

NMM Puerto Rico from 2 Mar 06z

ARW Puerto
Sample Fire Wx Fields

PBL H forecast from HIRES NMM run vt 2011031606F12

Transport wind speed forecast from HIRESNMM run vt 20110316

Min 2m RH forecast from HIRES NMM run vt 2011031606F12

Ventilation rate forecast from HIRES NMM run vt 2011031606F12
Hourly max field LOOPS

<table>
<thead>
<tr>
<th>UPDRAFT W</th>
<th>10M WIND</th>
<th>2-5 km UPHLCY</th>
<th>~1000m AGL RADAR REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED</td>
<td>BLUE</td>
<td>GREEN</td>
<td>RED</td>
</tr>
</tbody>
</table>

Hourly max field LOOPS

<table>
<thead>
<tr>
<th>UPDRAFT W</th>
<th>10M WIND</th>
<th>2-5 km UPHLCY</th>
<th>~1000m AGL RADAR REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED</td>
<td>BLUE</td>
<td>GREEN</td>
<td>RED</td>
</tr>
</tbody>
</table>

Hourly max field LOOPS

<table>
<thead>
<tr>
<th>UPDRAFT W</th>
<th>10M WIND</th>
<th>2-5 km UPHLCY</th>
<th>~1000m AGL RADAR REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED</td>
<td>BLUE</td>
<td>GREEN</td>
<td>RED</td>
</tr>
</tbody>
</table>

Hourly max field LOOPS

<table>
<thead>
<tr>
<th>UPDRAFT W</th>
<th>10M WIND</th>
<th>2-5 km UPHLCY</th>
<th>~1000m AGL RADAR REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED</td>
<td>BLUE</td>
<td>GREEN</td>
<td>RED</td>
</tr>
</tbody>
</table>

HREF Ensemble Guidance (aka Hybrid)

- 21 SREF members are interpolated to the HiResW output domains (except Guam, which isn’t covered by SREF).

- The 21 SREF perturbations (difference each member with the ensemble mean) are combined with the two HiResW (NMM and ARW) deterministic runs to produce a 44-member high resolution ‘ensemble’.

- Provides higher-resolution probabilistic and ensemble-mean guidance at minimal computational expense.

- Motivated initially by the request for QPF support for the Hanson Dam crisis in Washington.
HREF Mean, ARW & NMM
2m Temperature vs Surface Obs

HREF has Lowest RMS & BIAS Near Zero
Current NCEP SREF System (21 members)

<table>
<thead>
<tr>
<th>Model</th>
<th>Membership</th>
<th>Resolution</th>
<th>Forecast Hours</th>
<th>IC/IC perturbation</th>
<th>LBC/LBC perturbation</th>
<th>Output Frequency for pgrb files</th>
<th>Output Frequency for bufr soundings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eta_BMJ</td>
<td>3 (ctl1, n1, p1)</td>
<td>32km</td>
<td>87hr</td>
<td>ndas/regional bred</td>
<td>GFS/GEFS</td>
<td>1hrly to 39hr, 3hrly afterward</td>
<td>1hrly and breakdown to sites</td>
</tr>
<tr>
<td>Eta_KF</td>
<td>3 (ctl2, n2, p2)</td>
<td>32km</td>
<td>87hr</td>
<td>ndas/regional bred</td>
<td>GFS/GEFS</td>
<td>1hrly to 39hr, 3hrly afterward</td>
<td>1hrly and breakdown to sites</td>
</tr>
<tr>
<td>RSM_SAS (Ferrier MP)</td>
<td>3 (ctl1, n1, p1)</td>
<td>32km</td>
<td>87hr</td>
<td>GFS 3hr fcst/regional bred</td>
<td>GFS/GEFS</td>
<td>1hrly to 39hr, 3hrly afterward</td>
<td>1hrly and breakdown to sites</td>
</tr>
<tr>
<td>RSM_RAS (Zhao MP)</td>
<td>2 (n2, p2)</td>
<td>32km</td>
<td>87hr</td>
<td>GFS 3hr fcst/regional bred</td>
<td>GFS/GEFS</td>
<td>1hrly to 39hr, 3hrly afterward</td>
<td>1hrly and breakdown to sites</td>
</tr>
<tr>
<td>WRF-NMM</td>
<td>5 (ctl, n1, p1, n2, p2)</td>
<td>32km</td>
<td>87hr</td>
<td>GFS 3hr fcst/global ET</td>
<td>GFS/GEFS</td>
<td>1hrly to 39hr, 3hrly afterward</td>
<td>1hrly and breakdown to sites</td>
</tr>
<tr>
<td>WRF-ARW</td>
<td>5 (ctl, n1, p1, n2, p2)</td>
<td>35km</td>
<td>87hr</td>
<td>GFS 3hr fcst/global ET</td>
<td>GFS/GEFS</td>
<td>1hrly to 39hr, 3hrly afterward</td>
<td>1hrly and breakdown to sites</td>
</tr>
</tbody>
</table>
WRF v2.2 Members (5 each) after October 2009 Upgrade

<table>
<thead>
<tr>
<th></th>
<th>WRF-NMM</th>
<th>WRF-ARW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Grid</td>
<td>32 km</td>
<td>35 km</td>
</tr>
<tr>
<td>Vertical Domain</td>
<td>52 levels 50 mb top Sigma-Pressure</td>
<td>36 levels 50 mb top Sigma</td>
</tr>
<tr>
<td>Convection</td>
<td>BMJ</td>
<td>KF</td>
</tr>
<tr>
<td>PBL/Turbulence/Surface Layer</td>
<td>MYJ</td>
<td>YSU</td>
</tr>
<tr>
<td>Microphysics</td>
<td>Ferrier</td>
<td>WSM3</td>
</tr>
<tr>
<td>Land-Surface</td>
<td>NOAH</td>
<td>NOAH</td>
</tr>
<tr>
<td>Radiation (SW/LW)</td>
<td>GFDL/GFDL</td>
<td>Dudhia/RRTM</td>
</tr>
<tr>
<td></td>
<td>Lacis-Hansen/Fels-Schwartzkopf</td>
<td></td>
</tr>
</tbody>
</table>
ARW (WRF) Physics options – help from DTC

<table>
<thead>
<tr>
<th></th>
<th>Control NCAR</th>
<th>Pair 1 NCAR</th>
<th>Pair 2 RAP</th>
<th>Pair 3 NMM (?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microphysics</td>
<td>5- Ferrier</td>
<td>3– WSM 3</td>
<td>8- Thompson</td>
<td></td>
</tr>
<tr>
<td>Longwave</td>
<td>1- RRTM</td>
<td>1 - RRTM</td>
<td>1- RRTM</td>
<td></td>
</tr>
<tr>
<td>Shortwave</td>
<td>1- Dudhia</td>
<td>1 - Dudhia</td>
<td>2- Goddard</td>
<td></td>
</tr>
<tr>
<td>Surface layer</td>
<td>1- MM5 similarity</td>
<td>1– MM5 similarity</td>
<td>2- Eta similarity</td>
<td></td>
</tr>
<tr>
<td>Land surface</td>
<td>2- NOAH</td>
<td>2- NOAH</td>
<td>3- RUC LSM</td>
<td></td>
</tr>
<tr>
<td>PBL</td>
<td>1- Yonsei U.</td>
<td>1- Yonsei U.</td>
<td>2- MYJ</td>
<td></td>
</tr>
<tr>
<td>Convection</td>
<td>1- Kain-Fritsch</td>
<td>1- Kain-Fritsch</td>
<td>5-Grell (in V3.3)</td>
<td></td>
</tr>
</tbody>
</table>
Grid Association Revealed

Nests **Are** Grid Associated

Nests are **Not** Grid Associated

When this is relaxed we’ll be able to run a continental scale nest (NAM that crosses the pole) inside a global NMMB with multiple hurricanes...
Hypothetical NEMS Simultaneous Run
Global [with Igor & Julia] and NAM [with CONUS nest]
Highlights of NEMS Preprocessing System (NPS) for NMMB (courtesy Matt Pyle)

- To create the first guess at the start of the NDAS (at time T-12hr), NPS uses GFS spectral coefficients rather than post-processed pressure level fields on a 1 deg lat/lon grid as has to be done with WRF Preprocessing System (WPS)

- Lateral boundary conditions also based on GFS spectral coefficients (as is done in current NAM but not in WRF REAL)
MODIS-IGBP land-use specifications will replace USGS (Wong and Ek, Conference on Hydrology)

<table>
<thead>
<tr>
<th>Classification Scheme</th>
<th>IGBP</th>
<th>USGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastline</td>
<td>More Details</td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>More</td>
<td></td>
</tr>
<tr>
<td>Evergreen</td>
<td>More in Alaska</td>
<td>More in SE of US</td>
</tr>
<tr>
<td>Deciduous Broadleaf</td>
<td>More in SE of US</td>
<td></td>
</tr>
<tr>
<td>Savanna</td>
<td></td>
<td>More in Oklahoma</td>
</tr>
</tbody>
</table>

Little difference in near-sfc T, Td between NMMB runs w/ IGBP & USGS land-use (based on many tests run for all seasons)