A new precipitation scavenging scheme for WRF-Chem (and other Updates)

G. Pfister¹, J. Neu², S. Walters¹, J.-F. Lamarque¹, M. Barth¹, J. Lee¹, P. Hess³

¹ National Center for Atmospheric Research, Boulder, CO
² Jet Propulsion Laboratory, Pasadena, CA
³ Cornell University, Ithaca, NY
Wet scavenging = important sink for many atmospheric species e.g. HNO₃, the most soluble gas, represents nitrogen’s final oxidized state and its sinks are physical rather than chemical.

Global annual average HNO₃ budget (Liao et al., JGR 2004)
Wet scavenging = important sink for many atmospheric species e.g. HNO$_3$, the most soluble gas, represents nitrogen’s final oxidized state and its sinks are physical rather than chemical.

- Large Scale Precipitation Scavenging Scheme from Jessica Neu ("Neu-Scheme") has been embedded and tested in V3.2. {Update to V3.3 in progress}
- For gas species (HNO$_3$, HNO$_4$, H$_2$O$_2$, NH$_3$, HCHO,...)
- For MOZART and MOZCART chemistry options (chem_opt = 111 and chem_opt=112)
- Linked to the Thompson microphysics scheme (mp_physics=8)
- Neu-Scheme is also implemented in CAM-Chem
WASHOUT SCHEME - BASICS

- **Two processes:**
 - In-cloud (Nucleation Scavenging or Rainout)
 - Below-Cloud (Impact Scavenging or Washout)
WASHOUT SCHEME - BASICS

In-Cloud Scavenging
(rainout, nucleation scavenging)

Local uptake by initial cloud droplets and their conversion to precipitation
Scavenging proportional to amount of condensate converted to precipitation

Below-Cloud Scavenging
(washout, impaction scavenging)

Collection by falling droplets, either from interstitial / ambient air (most common) or liquid via accretion processes
Scavenging proportional to precipitation flux in the layer

Both modeled as a first-order loss process:
\[X_{\text{inco}} = X_0 F(1 - \exp(-\lambda \Delta t)) \]

Loss rate depends on cloud water, rate of precipitation formation, and rate of tracer uptake by liquid phase
Loss rate depends on precipitation rate and rate of tracer uptake by the liquid phase, mass-transfer rate, or collision rate, depending on species

Courtesy of Jessica Neu

- **Two processes:**
 - In-cloud (Nucleation Scavenging or Rainout)
 - Below-Cloud (Impact Scavenging or Washout)

- **Partitioning between in-cloud and below-cloud scavenging**
Each model level is partitioned into up to 4 sections, each with a gridbox fraction, precipitation rate, and precipitation diameter:

- **Old Cloud** – Area of the gridbox with cloud that also has rain falling from above
- **New Cloud** – Area of the gridbox with cloud and no rain falling from above
- **Ambient** – Area of the gridbox with rain from above falling through clear sky
- **Clear Sky** – Area of the gridbox with no cloud and no rain from above

New precip is spread evenly between OC and NC.

In WRF we use a binary cloud fraction, so each layer is assigned one of the 4 sections.

Similar to Jakob and Klein (2000).

Courtesy of Jessica Neu.

- **Two Processes:**
 - In-cloud (Nucleation Scavenging or Rainout)
 - Below-Cloud (Impact Scavenging or Washout)

- **Partitioning between in-cloud and below-cloud scavenging**

- **Transfer of soluble gases into liquid condensate follows Henry’s Law (assuming equilibrium between gas and liquid phase)**

- **Two Processes:**
 - In-cloud (Nucleation Scavenging or Rainout)
 - Below-Cloud (Impact Scavenging or Washout)
- **Partitioning between in-cloud and below-cloud scavenging**
- **Transfer of soluble gases into liquid condensate follows Henry’s Law** (assuming equilibrium between gas and liquid phase)
- **Nucleation Scavenging (Uptake by ice)** – treated as burial process (tracers deposit on surface along with water vapor and are buried as the ice crystal grows)
NUCLEATION SCAVENGING

- In-cloud scavenging during ice particle formation is based on the empirical relationship between the HNO$_3$:H$_2$O molar ratio and temperature (Karcher and Voigt, 2006).
- Below-cloud scavenging is based on a rough representation of the riming process modeled as a collision limited first order loss process.

Observed HNO$_3$: H$_2$O molar ratios are bounded by:

1. Uptake of all available ambient HNO$_3$ during ice crystal growth, or
2. Pure dilution by deposition of H$_2$O on ice

Trapping efficiency increases with decreasing T.
WRF-CHEM – Column Integrals
(MOZCART; 12x12 km²; 06/10–07/10 2008)

1.5 – 10 km

HNO₃ Burden

Rain Production

HNO₃ Scavenging

Surface – 1.5 km

HNO₃ Burden

Rain Production

HNO₃ Scavenging
WRF-CHEM – Domain-Wide Statistics

HNO₃ Burden (kg)

Rain Prod. (1e⁻³ kg/m²/s)

Cloud Fraction (/10)

Avg= 1.6e7 kg
WRF-CHEM – Domain-Wide Statistics

HNO$_3$ Burden (kg)

- Avg = 1.6e7 kg

Rain Prod. (1e-3 kg/m2/s)

Cloud Fraction (/10)

In-Cloud Scav.

- total loss = 2545 kg

Below-Cloud Scav.

- 107 kg

Riming

- 85 kg

Evaporation

- -509 kg

(Total Loss ~ 0.98 Tg/year; Burden and Loss in the order of 1-2% of global budget studies)
WRF-CHEM – Comparison to Observations

NASA ARCTAS-CARB

DC-8 Flights
18, 20, 22, 24 June 2008

Jacob et al., The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results, Atmos. Chem. Phys., 2010
CAM-CHEM – Neu versus previous scheme

Horowitz Scheme
Neu Scheme

Courtesy of Jean-François Lamarque
COMPARISON TO OTHER SCHEMES

Compare UCI (University of CA, Irvine) CTM with Neu scheme to Global Modeling Initiative (GMI) CTM

UCI$_{scav}$ matches aircraft campaign profiles better than GMI$_{scav}$, especially in remote regions.

Observations clearly contradict simulation with no ice scavenging

Global Mean Change in tropospheric O$_3$ between Neu and Neu-no ice about 10% (2.5 DU)

Courtesy of Jessica Neu
Upper Chemical Boundary Conditions
Chemical UBC are taken from WACCM climatology for past, present and future (previous talk by M. Barth et al.)

Reduced Chemistry
(Howeling et al., 1998); useful for long climate runs and compatible with CAM-Chem (collaboration with J. Fast, JPL)

Aircraft Tracking Tool
Enable output for specified locations and times

Fire Emissions Preprocessor “Fire_Emis”
For creating wrffirechemi_<domain> files when running WRF-Chem with online plume rise.
Emissions based on NCAR Fire Model (FINN; C. Wiedinmyer).
Download from http://www.acd.ucar.edu/wrf-chem/
Wet Scavenging Scheme based on work by J. Neu has been implemented in WRF-Chem and will be made available with the next release.

Currently for MOZART and MOZCART chemistry options, but could be extended to other chemistry options.

Also for upcoming release:
- Upper chemical boundary conditions from climatology
- Reduced chemical mechanism
- Tracking Tool for outputting fields along flight tracks

Now available to community: Fire_Emis Preprocessor for creating wrffirechemi_d<domain> files from NCAR Fire Model FINN.