An Examination Of Interesting Properties Regarding A Physics Ensemble

2012 WRF Users’ Workshop

Nick P. Bassill
June 28th, 2012
Introduction

- During the 2009 North Atlantic hurricane season, a real-time ensemble was created locally once per day
- Using simple linear regression techniques, I will present a few (potentially) interesting results comparing a low resolution WRF-ARW physics ensemble with the operation GFS ensemble
Data Generation Overview

Dynamical Core is WRF-ARW 3.0

Two Days Between Each Initialization (From GFS 00Z Forecast)

76 Cases From Early June Through October

Initialization Time

Spread Of 120 Hour Forecasts
Outer Domain: 90 km Grid Spacing

Inner Domain: 30 km Grid Spacing
Physics Ensemble vs. GFS Ensemble

- The results shown were calculated as follows:
 - Tune 120 hour forecasts to 0 hour GFS analyses for both the physics ensemble* and GFS ensemble comprised of an equal number of members
 - After this is done, it’s easy to calculate the average error per case for both ensembles
 - The average error will be shown, along with the difference between the two normalized to the standard deviation of the variable in question

* Using outer 90 km grid
(Left): Yellow and red colors mean the parameterization ensemble outperformed the GFS ensemble, blue colors mean the opposite.

2 Meter Temperature (°C)
• (Right): Yellow and red colors mean the parameterization ensemble outperformed the GFS ensemble, blue colors mean the opposite.

500 hPa Geopotential Height (m)
(Left): Yellow and red colors mean the parameterization ensemble outperformed the GFS ensemble, blue colors mean the opposite.

10 Meter Wind Speed (m/s)
Observations

• On average, the GFS ensemble “wins” by ~0.01 standard deviations for any given variable

• Generally speaking, the parameterization ensemble performs better in the tropics, while the GFS ensemble performs better in the sub/extratropics

Let’s examine the 2 m temperature more closely ...
2 Meter Temperature Composites

- The fill is the mean 2 m temperature at hour 120 for the parameterization ensemble members
- The contour is the 95% significance threshold
2 Meter Temperature Composites

- The fill is the mean 2 m temperature anomaly at hour 120 for the parameterization ensemble members.
- The contour is the 95% significance threshold as seen previously.
2 Meter Temperature Composites

- The fill is the mean 2 m temperature anomaly at hour 120 for the parameterization ensemble members
- The contour is the 95% significance threshold as seen previously
2 Meter Temperature Composites

- The fill is the mean 2 m temperature at hour 120 for the GFS ensemble members
- Note – no significance contour is shown
2 Meter Temperature Composites

- The fill is the mean 2 m temperature anomaly at hour 120 for the GFS ensemble members
- Note how indistinguishable one member is from another
- Unlike the physics ensemble, member differences aren’t correlated from run to run
Parameterization Ensemble Member Errors

At ~44 N, -108 W

Black = YSU PBL Members

Green = MYJ PBL Members
GFS Ensemble Member Errors
Conclusions

- Different parameterization combinations do have certain (statistically significant) biases
- Pure parameterization ensembles theoretically are better than pure initial condition ensembles, since member differences are correlated from run to run
- Using this information, a simple (read: dumb) parameterization ensemble can perform equivalently to a “superior” ensemble
- This is done by viewing parameterization biases as a benefit, not a problem
Future Work

• Currently, the parameterization ensemble vs. GFS ensemble results are being redone with the use of Global WRF

• More advanced statistical techniques could be used to improve on these results
 - Unequal weighting
 - Using more predictors
 - Identifying regimes
Idea: Predicting Predictions

- Generically speaking, all of these models are pretty similar
- For each forecast day, I ran an additional model with completely different parameterizations, which were purposely chosen to be “bad” (at least in combination)
- Afterward, I used the original ten models to predict the new one (i.e. a prediction of a prediction) using multivariate linear regression
For Reference: New Composites of 500 mb Height
Case 28: July 28th 2009
Case 38: August 17th 2009