Improved Treatment of Boundary Layers in Urban Areas for Air Quality Modeling.

Jonathan Pleim and Robert Gilliam
USEPA
Motivation

• Urban/suburban areas are generally warmer and more turbulent than surroundings
• Less stable boundary layers at night and during morning and evening transitions mix surface emissions more quickly
• Rate of morning PBL growth and entrainment from residual layers are critical for photochemistry in urban areas
• Effects of built environments disproportionately important for AQ because of high emissions in these areas
Problem

- Without realistic treatment of UHI:
 - PBL too stable during morning and evening transitions and overnight
 - Overprediction of ground emitted primary species (e.g. CO, NOx, Primary PM)

July 2006 – CMAQ 12 km CO
4 km modeling for Houston – August 2006

CMAQ v4.7 and 5.0 overpredict CO especially during morning and evening rush hours

WRF Potential temperature (blue) in Houston at 7 PM shows premature surface inversion
Potential Solutions

• Meteorological models and parameterizations for urban areas vary greatly in complexity and data requirements.
• Currently WRF has several urban parameterizations: Bulk, single-layer, and multi-level BEP-BEM NUDAPT all tied to the NOAH LSM
• Need for a simple scheme considers the effects of development at the local (1-4 km) and regional (12 km) grid scales that works with the PX LSM that we use for WRF-CMAQ.
A New Bulk Approach for PX LSM

- Leverage very high resolution National Land Cover Database (NLCD) with multi-level urban classifications
 - PX LSM considers subgrid LU fractions
- Utilize NLCD-based Impervious surface data directly in land-surface model to scale surface heat capacity
- Increase surface roughness for urban LU classes to better represent developed areas
- Decrease albedo in urbanized areas to account for sky-view and radiation trapping effects
- Reduce deep soil temperature nudging strength
Impervious Fraction (%) for 12 km Grid
Impervious Fraction (%) for 4km Grid
Impervious Fraction (%) for 1 km Grid

Shopping malls in Sugarland
Skin Temperature on Aug 24,2006 at 10Z

Base – NLCD 2006

Impervious 2
Evaluation Using Tethersonde Profiles

Tethersondes were launched on selected evening and nights in September through November at U of Houston

Profiles from 2 model runs:

NoImp --- no impervious, NLCD 2006

Imp2 -- Impervious, increased roughness, decreased albedo and weaker deep soil temp nudging

Tethersonde data provided by Bernhard Rappenglueck (UH)
September 7, 23LT (4Z)
September 7, Midnight LT (5Z)
September 8, 2LT (7Z)

Graph showing the following data:

- **wrf_9-8_noimpout**
 - Theta-noimp
 - Theta-imp2
 - Tethersonde

Graph showing the following data:

- **wrf_9-8_noimpout**
 - WS-noimp
 - WS-imp2
 - Tethersonde

Office of Research and Development
Atmospheric Modeling & Analysis Division, National Exposure Research Laboratory
September 8, 3LT (8Z)
September 8, 4LT (9Z)
September 8, 6LT (11Z)

wrf_9-8_noimpout

wrf_9-8_noimpout
September 8, 8LT (13Z)
Effects of urban scheme on AQ modeling

Average CO over AQS sites in Houston for 5 days

These preliminary experiments show modest reduction of CO overprediction
Conclusions

• New bulk urban scheme for the PX-LSM shows much improved PBL structure in evening, overnight, and morning compared to Houston tethersonde measurements

• Designed to take advantage of hi-resolution NLCD LU data and impervious surface area.

• The capability of the PX LSM to include subgrid LU fractions and any amount of impervious surface allows effects of development in all areas

• This is particularly important for AQ modeling since emissions occur mostly from highways, residential, and urban areas
Next steps

• Add anthropogenic heating based on population and housing unit density
• Add NLCD canopy fraction data for accurate accounting of tree cover in all areas including urban.
• Comprehensive evaluation of meteorology and AQ at all scales