Evaluation of WRF Model’s Physical Parameterizations for Regional Climate Studies Over Southern Ontario

Mostafa Kamal¹ and John C. Lin¹,²

¹University of Waterloo, Waterloo, Canada
²University of Utah, Salt Lake City, USA

Abstract

The Weather Research and Forecasting (WRF) Model is used to investigate the sensitivity of total precipitation (RAINC + RAINNC) and daily temperatures in physical parameterization schemes for Southern Ontario, Canada. Simulations overestimated precipitation in July but underestimated it in January, and were more sensitive to convective and PBL parameterizations. WRF performed poorly in simulating summer extreme precipitation. For surface air temperature, the model captured spatial heterogeneity well; however, the magnitude is systematically underestimated, being higher in January and lower in July. Model underestimates daily minimum temperature but overestimates maximum temperature. Temperature is most sensitive to PBL schemes, followed by Microphysics. Taylor diagram analysis indicates that modeled precipitation and temperature agree well with DAYMET observations with correlation coefficient of 0.6~0.8 and >0.9, respectively. Thus, optimum selection of parameterization combinations is indispensable in configuring WRF for regional climate change assessment.

Objective of the study

We used WRF version 3.3 as nested regional climate model mode. Model grids were configured so innermost domain covers Southern Ontario and outermost covers entire Great Lakes basin (Figure 1). Main objective: Identify optimal physical parameterizations for model of region undergoing rapid population growth/urbanization, and simulate land-use/land-cover conversion impacts.

Experimental Configuration

Simulation Period: January and July, 2002
Horizontal Resolution: 8 km, 2.67km, and 0.9km
Vertical layer: 28 (Sigma)
ILBC: NARR reanalysis data updated by every three hour
Cumulus Scheme: Kain-Fritsch, Belts-Miller-Janjić, Grell-Driver, Simplified Arakawa Schubert, and Tiedtke
PBL Physics: YSU, MYJ, MYS2, and MRF
Microphysics Scheme: Lin, Eta, WSM6, Thompson, and Goddard
Relaxation Zone width: (4+1) and (9+1)

WRF Nested Model Configuration

Figure 1: Model domain for simulations

WRF Simulation Comparison

• WRF model output was compared against DAYMET observations;
• DAYMET: a very high-resolution (1km horizontal) gridded climate dataset by Thornton et al. (2012) re-gridded to match the given WRF domain size and resolution.
• In all simulations: MP stands for microphysics, CU for cumulus parameterizations, PBL for planetary boundary layer schemes, and RZ stands for relaxation zone width.

Precipitation

• WRF realistically reproduces January precipitation patterns and magnitude and captured extreme precipitation pattern very well.
• However, poor performance were observed for July precipitation.
• Precipitation was very sensitive to cumulus and PBL parameterization, which is quite the reverse of Mooney et al. (2013) results over European domain.

Figure 2: Temporal characteristics of simulated and observed precipitation: sensitivity to cumulus and microphysics parameterization

• Taylor diagram indicates that simulated precipitation is nearly independent of choice of physical parameterizations. However, contrasting behaviour was found in July.
• In general, simulated precipitation and temperature agree well with the DAYMET observations (correlation coefficient of 0.8~0.8 and >0.9, respectively).
• Root mean square difference (RMSD) is higher for precipitation and lower for temperature (not shown).

Figure 3: Temporal characteristics of simulated and observed precipitation: sensitivity to PBL parameterization and relaxation zone width

• Figure 4: Taylor diagram showing correlation coefficient, and standard deviation and root mean square difference of modeled precipitation relative to DAYMET observation.

Figure 5: Same as figure 2, but for daily maximum temperature

• Comparison between simulated daily maximum and minimum surface air temperatures with observation showed underestimation and overestimation, respectively. Mean temperature agrees fairly well with observation.
• For all those variable model is most sensitive to PBL parameterizations, also to Microphysics. One more time, our result disagree with Mooney et al. (2013).
• Among all PBL schemes, observed temperatures were best reproduces by MRF.

Future Work

• To investigate whether temperature and precipitation converges numerically when regional climate model’s horizontal resolution approaches to nearly cloud resolving scale.

Summary/Future Work

Percipitation

• Simulated precipitation shows overestimation in July but underestimation in January.
• WRF performs poorly in simulating extreme precipitation event in July.
• Precipitation is most sensitive to cumulus and PBL parameterization.

Temperature

• Colder bias in winter and warmer bias in summer.
• Temperature insensitive to convective parameterizations and relaxation zone width but sensitive to PBL and Microphysics schemes.
• Performance of physical parameterizations depends on geographic distribution of the area of interest.

Future Work

• To investigate whether temperature and precipitation converges numerically when regional climate model’s horizontal resolution approaches to nearly cloud resolving scale.

References


Acknowledgements

We would like to acknowledge the following institutions for their help in making this research possible:

1. Oak Ridge National Laboratory
2. University of Waterloo
3. University of Utah, Salt Lake City, USA

Figure 7: Same as figure 4, but for daily maximum temperature of January