

Proudly Operated by Battelle Since 1965

How Aerosols Affect Radiation and How Those Processes are Included in Atmospheric Models

Jerome Fast

14th Annual WRF User's Conference, June 24, Boulder, CO

Why Should We Care about Aerosols?

Proudly Operated by Battelle Since 1965

Indirect Effects of Aerosols on Radiation

The number of activated aerosols affects the cloud drop size distribution, and consequently cloud albedo and radiation budget

from Yang et al., ACP (2011)

Aerosols in Relation to Radiation Modules

Aerosols affect radiation mostly in the visible wavelength region

- In contrast with water vapor, carbon dioxide, and ozone, the <u>temporal</u> <u>and spatial variability</u> of aerosols is much larger and difficult to simulate
 - Episodic Sources: dust, biomass burning, volcanic (potentially large concentrations)
 - "Continuous" Sources: sea-salt, biogenic, anthropogenic (usually smaller concentrations)

How aerosol effects accounted for radiation modules in atmospheric models?

- Ignored no effect of aerosols on radiation
- Use <u>climatological</u> aerosol properties that may vary in space and seasonally
- Use prognostic aerosols (e.g. WRF-Chem)

Aerosol Source: Dust

Proudly Operated by Battelle Since 1965

- Known source regions, e.g. Sahara and Gobi deserts
- Amount emitted depends on wind speed and soil moisture
- Seasonality of dust storms

Aerosol Source: Volcanic

Proudly Operated by Battelle Since 1965

6

Aerosol Source: Biomass Burning

Proudly Operated by Battelle Since 1965

- Aerosol composition depends on vegetation type and phase of fire (smoldering vs flaming)
- Large persistent fires can significantly affect regional air quality
- Smoke often transported large distances, affecting radiation budget downwind 7

Aerosol Source: Sea Salt and Biogenic

Proudly Operated by Battelle Since 1965

air ea interactions

- Smaller concentrations than dust, volcanic, and biomass burning aerosols and therefore have a smaller overall effect on atmospheric radiation budget
- Sea-salt tends to be larger particles with shorter lifetimes
- Although concentrations of biogenic aerosols are usually low, it comprises a large fraction of the organics in the atmosphere globally

Aerosol Source: Anthropogenic

Proudly Operated by Battelle Since 1965

regional-scale anthropogenic plume Mexico City mixture of scattering (SO₄, NH₄, NO₃, OM) and absorbing (BC) aerosols NASA photo from NASA DC-8 aircraft

- Many sources including vehicles, industries, and residential
- Emissions of particulates and trace gas precursors are decreasing in some countries, but remain high in other countries

Effects of Soot and Dust on Snow

Proudly Operated by Battelle Since 1965

- Particulates deposited on snow change the surface albedo, so that more radiation is absorbed and less reflected
- Enhances melting of snow and ice
- Global models do not represent the rapid decrease in sea ice extent – do aerosol radiative effects represented in models contribute to this error?

Effects on Photochemistry

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Photochemistry: Examples

Proudly Operated by Battelle Since 1965

Proudly Operated by Battelle Since 1965

Terminology: Parameters used by Measurements and Model Formulations

Aerosol Optical Depth, t_l

- Extinction coefficient: fractional depletion of radiance per unit path length (km⁻¹) due to scattering and absorption by aerosols
- Aerosol optical depth (AOD) or thickness (AOT): integrated extinction coefficient over a vertical column, I / Io = e^{-t}
 - AOD = 0 no aerosol effect
 - AOD ~ 1 "large"
 - AOD > 1 extremely high aerosol concentrations

AOD: Global Aerosol Seasonality

Proudly Operated by Battelle Since 1965

Average AOD from MODIS Terra January, February, March Apr

July, August, September

October, November, December

Asymmetry Factor, g

- Preferred scattering direction (forward or backward) for the light encountering the aerosol particles
 - Approaches 1 for scattering strongly peaked in the forward direction
 - Approaches -1 for scattering strongly peaked in the backward direction
 - g = 0 means scattering evenly distributed between forward and backward scattering (isotropic scattering – such as from small particles)
- Depends on both size and composition of aerosols

Proudly Operated by Battelle Since 1965

How Aerosol Effects on Radiation Included in Atmospheric Models?

Overall Methodology for Prognostic Aerosols Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965 **Generic Aerosol Optical Property Module** size and number distribution layer optical depth, t₁ shortwave / refractive Mie composition single scattering albedo, wo longwave indices theory aerosol water asymmetry factor, q radiation

M, M_o, and g computed at 300, 400, 600, and 1000 nm for shortwave radiation

for longwave radiation

As of v3.3, \mathbb{W} , \mathbb{W}_{o} , and g computed at 16 wavelengths

Angstrom exponent used to convert to wavelengths needed by radiation schemes

- Compatible with GOCART, MADE/SORGAM, MOSAIC, and MAM aerosol models as of v3.5
- Compatible with Goddard shortwave scheme and RRTMG shortwave and longwave schemes

Importance of Aerosol Water

Aerosol water will have a big impact on optical properties

- Aerosol water depends on relative humidity (RH); thus predictions of RH need to be examined when evaluating aerosol direct radiative effects
- Composition affects water uptake: hydrophobic vs hydrophillic aerosols
- Aerosols models have different methods of computing aerosol water
 - GOCART: Petters and Kreidenweiss (2007)
 - MADE/SORGAM: diagnosed
 - MOSAIC: prognostic species that accounts for hysteresis effect

Refractive Indices

- Refractive index of a substance is a dimensionless number that describes how light propagates through a medium
- Refractive indices in models based on literature values derived from laboratory experiments, vary with wavelength for some aerosol compositions

Default Values for SW Radiation in WRF (users can change)			
<u>re</u>	al part	imaginary part	
BC =	1.850 -	- 0.71i (all I)	
OM =	1.450 -	- 0.00i (all I)	similar
SO ₄ =	1.468 -	- 1.0e-9i (300 nm), small I dependence	relationships for
$NH_4NO_3 =$	1.500 -	- 0.00i (all I)	I W radiation
NaCl =	1.510 -	- 0.866e-6i (300 nm), small I dependence	
dust =	1.550 -	- 0.003i (all I), depends on type of dust	
H ₂ 0 =	1.350 -	- 1.52e-8i (300 nm), small I dependence	
		greater the #	

• On-going research:

- secondary organic aerosols (SOA) may be absorbing at near-UV range
- "brown carbon"

Mixing Rules for Mie Calculations

Prior to the Mie calculations, refractive indices need to be averaged among the compositions in some way for discrete size ranges of the aerosol size distribution. All particles within a size range assumed to have the same composition, although relative fraction can differ among size ranges.

Currently three choices in WRF:

- Volume Averaging: averaging of refractive indices based on composition
- Shell-Core: black carbon core and average of other compositions in shell (Ackermann and Toon, 1983; Borhren and Huffman, 1983)
- Maxwell-Garnett: small spherical randomly distributed black carbon cores in particle (Borhren and Huffman, 1983)

Mie Calculations

Proudly Operated by Battelle Since 1965

The Mie solution to Maxwell's equations describes the scattering of radiation by a sphere, used to obtain t₁, w_o, and g

- Aerosols are rarely spheres; however, aged aerosols become more "sphere-like"
- Several "standard" codes available and one is included in WRF
- Mie codes can be computationally expensive, so an approximate version (*Ghan et al.* JGR, 2001) is also available

other codes available to handle more complex morphology, but not clear if it is really necessary

Proudly Operated by Battelle Since 1965

Examples: Impacts and Evaluation of Optical Properties

Impact of Aerosols over Europe

from Forkel et al. ACP (2012)

Proudly Operated by Battelle Since 1965

Extinction Profiles over Central Mexico from *Fast et al.* ACP (2009)

NASA B-200 Aircraft Flight Path 13 March 2006 during MILAGRO

Dust and Biomass Burning in Africa from *Zhao et al.* ACP (2010)

Two Column Aerosol Project (TCAP) Providing Detailed Measurements for Closure Studies

TCAP led by PNNL and supported by DOE ARM Climate Research Facility

- TCAP collected measurements of aerosol size, composition, and mixing state as well as optical properties from in situ and remote sensing instruments
- Column Closure Studies: Aerosol microphysical properties will be used as input to optical property modules to identify uncertainties in simulated scattering, absorption, and extinction associated with model assumptions

Alternative Treatments of Mixing State

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

There are more complex treatments of mixing state being tested

Explicitly simulate each individual particle (e.g. PartMC-MOSAIC, Zaveri et al., JGR, 2010) _____ 0.8 -6 h (12:00 LST) **3C Dry Mass Fraction** 0.6 thousands of types of particles 0.4 -0.2 -0.0 4 6 2 6 2 2 6 0.01 0.1 Dry Diameter (um)

treatment of mixing state affects impact of aerosols in radiation

Sectional approach to represent black carbon mixing state (e.g. Matsui et al. JGR, 1013)

Is it Important to Include Aerosol Effects?

Depends on Your Application and Science Objectives

Weather Forecasting:

Debatable. While including feedbacks associated with aerosol-radiation interactions is more realistic, there is little evidence to show that its inclusion statistically improves forecast skill for meteorological and chemical quantities. Important for periods of extremely high aerosols?

Climate Simulations:

Yes. Average effect important to include. Aerosols lead to a net cooling of the atmosphere, although there is still some uncertainty

Need to consider whether prescribed aerosols are sufficient or if prognostic aerosols are needed

AOD Forecast over Europe - MACC

Proudly Operated by Battelle Since 1965

Questions?

Acknowledgements: This work is supported by DOE's Atmospheric System Research (ASR) program. I thank my team: Bill Gustafson, Richard Easter, Rahul Zaveri, Chun Zhao, Balwinder Singh, as well as Georg Grell and Steven Peckham for their contributions

