Post-processing Tools

Cindy Bruyère
Supported Post-Processing Packages

- **NCL**
 - Graphical package

- **ARWpost**
 - Converter (GrADS)

- **RIP4**
 - Converter and interface to graphical package NCAR Graphics

- **UPP**
 - Converter (GrADS & GEMPAK)

- **VAPOR**
 - Converter and graphical package
 - Support: VAPOR

- **IDV**
 - GRIB (from UPP)
 - GEMPAK (from wrf2gem)
 - Vis5d
 - CF complaint data (from wrf_to_cf)
 - Support: unidata

- **GEMPAK**
 - Data from wrf2gem or UPP
 - Support: unidata

- **MatLab; IDL; R; ferret; panoply; python**
Picking a Post-Processing Tool

- Can it read your data
 - netCDF (CF), GRIB, ASCII, shapefiles
- Do you have to first pre-process the data
- Can it handle big datasets
- Is it purely a visualization tool, or can you do post-processing as well
- Which diagnostic / statistical functions does it have
- 3D or 2D visualization
- Can it deal with staggered grids
- How easy is it to add diagnostics
- How is data below ground handled
- Vertical grids
- How is model time stamps handled
- Easy of use
- Cost of package
- Support
Data Handling

<table>
<thead>
<tr>
<th>Format</th>
<th>NCL</th>
<th>RIP4</th>
<th>GrADS</th>
<th>UPP</th>
<th>VAPOR</th>
<th>IDV</th>
</tr>
</thead>
<tbody>
<tr>
<td>netCDF</td>
<td></td>
<td>ripdp</td>
<td>ARWpost</td>
<td>converter</td>
<td>converter</td>
<td>converter</td>
</tr>
<tr>
<td>GRIB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASCII</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shapefiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>geogrid & metgrid output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intermediate file format</td>
<td></td>
<td></td>
<td></td>
<td>V6.2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wrfinput data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idealized data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wrfoutput</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>big data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Post-Processing

<table>
<thead>
<tr>
<th></th>
<th>NCL</th>
<th>RIP4</th>
<th>GrADS</th>
<th>UPP</th>
<th>VAPOR</th>
<th>IDV</th>
</tr>
</thead>
<tbody>
<tr>
<td>post-processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diagnostics</td>
<td>Some</td>
<td>Lots</td>
<td>Some</td>
<td>Some</td>
<td>Limited</td>
<td>Limited</td>
</tr>
<tr>
<td>add diagnostics</td>
<td>Very Easy</td>
<td>Easy</td>
<td>Easy</td>
<td>Relatively Easy</td>
<td>Less Easy</td>
<td>Less Easy</td>
</tr>
<tr>
<td>vertical output coordinate</td>
<td>model pressure height</td>
<td>model pressure height</td>
<td>model pressure height</td>
<td>pressure</td>
<td>model</td>
<td>model</td>
</tr>
<tr>
<td>extrapolate below ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
wrfout Timestamps

- **Output files not on exact times**
 - 2013-01-31_00
 - 2013-01-31_09
 - 2013-01-31_21
 - 2013-01-31_30
 - Delta Times = 9; 12; 9 minutes

- **Output files on exact times**
 - 2013-01-31_00
 - 2013-01-31_10
 - 2013-01-31_20
 - 2013-01-31_30
 - Delta Times = 10; 10; 10 minutes
Model Staggering

- Why is a converter needed if a package can display netCDF files?
shaded=T ; black=U ; red=V
RIP4

INPUT DATA

RIPDP

RIPDP format one file per TIME & VAR

Model Dependent

RIP
RIP4 - Examples
RIP4 General Information

- Requires NCL
 - http://www.ncl.ucar.edu

- Source Code:
 - http://www.mmm.ucar.edu/wrf/users/download/get_source.html

- Documentation
 - In program tar file under the Doc/ directory
 - http://www.mmm.ucar.edu/wrf/users/docs/ripug.htm

- OnLine Tutorial:
RIP4 on your computer

- **set environment variables**
  ```
  setenv RIP_ROOT /usr/$USER/RIP4
  setenv NCARG_ROOT /usr/local/ncl
  ```

- **Configure**
  ```
  ./configure
  check configure.rip to ensure netCDF paths are correct
  gfortran; z and png libraries may be required
  ```

- **Compile**
  ```
  ./compile
  ```

- **RIP4 has 2 parts (RIPDP and RIP)**
 - ripdp_wrfarw
 - ripdp_mm5
 - ripdp_wrfnmm
  ```
  -L<path_to_png_lib> -lpng
  -L<path_to_z_lib> -lz
  -L<path_to_gfortran_lib> -lgfortran```
Running ripdp & rip

```
ripdp_wrfarw [-n namelist-file] <model_data_name> [basic/all] <input_file(s)>
```

```
rip [-f] <model_data_name> rip-execution-name
```

Example:
```
ripdp_wrfarw RIPDP/CaseX all wrfout*
rip [-f] RIPDP/CaseX rip_sample.in
```

Output:
```
[rip_sample.out]
rip_sample.TYPE
```
RIP4 User Input File

&userin
    ......
/
&trajcalc
    ......
/

==================================
---------- Plot Specification Table  -----------
==================================

feld= ........
feld= ........
feld= ........

==================================

Namelists

Graphics
Creating a Plot with RIP4

```
feld=tmc; ptype=hc; vcor=s; levs=1fb; >
cint=2; cmth=fill; >
cosq=32,light.violet,-16,blue, >
0,yellow,16,orange,32,light.gray

feld=slp; ptype=hc; cint=2; linw=2

feld=uuu,vvv; ptype=hv; vcmx=1; >
colr=white;intv=5

feld=map; ptype=hb
feld=tic; ptype=hb
```

---

```
vcor=s; levs=2fb
vcor=s; levs=1,2,3
vcor=p; levs=800,500
vcor=p; levs=800,-300,100
```

---

**feld=**

- **diagnostics - tmc**
- **native - PSFC**
ARWpost

- Converter
  - Requires GrADS to display data

- GrADS software only needed to display data, not needed to compile the code

- Generate a number of graphical plots
  - Horizontal, cross-section, skewT, meteogram, panel

- Version 2 (old – not recommended)
  - Could produce vis5d output
  - Needed WRFV3 complied
ARWpost - Examples
ARWpost - converter

- Download Code (http://www.mmm.ucar.edu/wrf/users)

- OnLine Tutorial
  http://www.mmm.ucar.edu/wrf/users/graphics/ARWpost/ARWpost.htm

- Compile (similar to WPS)
  .configure & ./compile

- For GrADS output
  - GrADS libraries only needed to display data (freely available)
  - http://grads.iges.org/grads/grads.html
# namelist.ARWpost

<table>
<thead>
<tr>
<th><strong>input_root_name</strong></th>
<th><strong>Path and root name of files to use as input. Do not only provide directory name. Can use wild characters.</strong></th>
</tr>
</thead>
</table>
| **output_root_name** | **Output root name.**  
  **output_root_name.dat & output_root_name.ctl**  |
| **split_output**    | **Split your GrADS output files into a number of smaller files (a common .ctl file will be used for all .dat files).** |
| **frames_per_outfile** | **If split_output is True., how many time periods are required per output (.dat) file.** |
## namelist.ARWpost

**plot**	Which fields to process. *(all, list, all_list)*
	Order has no effect, i.e., “all_list” and “list_all”
	“list” – list variables in “fields”
**fields**	Fields to plot. Only used if list was used in the “plot” variable. **Must use to generate diagnostics.** Can be used for model output.
**Available diagnostics:**	cape, cin, mcape, mcin, clfr, dbz, max_dbz, geopt, height, lcl, lfc, pressure, rh, rh2, theta ,tc, tk, td, td2, slp, umet, vmet, u10m, v10m, wdir, wspd, wd10, ws10
## namelist.ARWpost

| interp_method | 0 = sigma levels  
<table>
<thead>
<tr>
<th></th>
<th>1 = user defined height or pressure levels</th>
</tr>
</thead>
</table>
| interp_levels| Only used if interp_method=1            
|              | Supply levels to interpolate to, in hPa (pressure) or km (height above sea level) 
|              | Supply levels bottom to top             |
| extrapolate  | Extrapolate below ground (default .false.) |
dset ^test.dat
options byteswapped
undef 1.e37
title OUTPUT FROM WRF V2.2 MODEL
pdef 259 163 lcc 40.000 -98.000 130.000 82.000
  60.00000 30.00000 -98.00000 22000.000 22000.000
xdef 877 linear -141.49254 0.09909910
ydef 389 linear 18.88639 0.09909910

options byteswapped
Needed on some machines - if you get NaNs when you plot,
remove this line from .ctl file
GrADS - .ctl file

dset ^test.dat
options byteswapped
title OUTPUT FROM WRF V3.2 MODEL
pdef 259 163 lcc 40.000  -98.000  130.000  82.000
60.00000  30.00000  -98.00000  22000.000  22000.000
xdef 877 linear  -141.49254  0.09909910
ydef 389 linear  18.88639  0.09909910
How to add diagnostics

- **RIP4**
  - Create a subroutine (note RIP4 expects the code to be in “j/l/–k” orientation)
  - Add links to the RIP4/src/fields.f routine
  - Add new subroutine to RIP4/src/Makefile

- **ARWpost**
  - Create a subroutine
  - Add links to ARWpost/src/module_diagnostics.f90
  - Add new subroutine to ARWpost/src/Makefile
VAPOR visualization of WRF-ARW data

Visualization and Analysis Platform for Oceanic, atmospheric and solar Research

Alan Norton
alan@ucar.edu
vapor@ucar.edu
National Center for Atmospheric Research
VAPOR visualization of WRF-ARW data
VAPOR Installation

• Available for Linux, Windows, or Mac systems
• Should have a reasonably modern graphics card
  – nVidia, ATI or AMD graphics cards are good; others may not perform all visualizations.
• From the VAPOR website http://www.vapor.ucar.edu:
  Download appropriate binary installer from the VAPOR download page, follow the installation instructions.
• You will need Administrative privileges on Mac
• Note that on Linux and Mac you need to source vapor-install.csh in your shell before running any VAPOR commands.
• Run the vaporgui application to visualize your data
A short summary of VAPOR capabilities

1. Read or convert WRF-ARW output files
2. Apply geo-referenced images to the terrain
3. Calculate 2D and 3D derived variables in Python
4. Volume render 3D variables
5. Display isosurfaces of 3D variables
6. Display color-mapped 2D variables on planes or terrain-mapped.
7. Use wind barbs to show flow direction and speed
8. Display streamlines or path lines in scene
9. Insert contour planes, use them to position flow seeds.
10. Image-based flow shows flow motion in 2D slices
11. Create animated 3D sequences
Reading or converting WRF-ARW output files

• To directly read WRF output:
  – Run vaporgui
  – All data must be on the same grid, using the same nesting level.
  – Specify “Import WRF-ARW output files” from the Data menu, and select all the wrfout files to visualize

• For interactive visualization of large WRF-ARW datasets, it’s best to convert WRF data to the VAPOR data format, using wrfvdfcreate and wrf2vdf utilities.
  – wrfvdfcreate wrfoutfiles... vdffile.vdf
    creates a VAPOR metadata file “vdffile.vdf” that describes a set of wrfout files.
  – wrf2vdf vdffile.vdf wrfoutfiles...
    converts the specified wrfout files to a vapor data collection
  – From the vaporgui Data menu, load the file “vdffile.vdf” to visualize the converted data
Apply images to use in the VAPOR scene

- Geo-referenced satellite images can be retrieved from the Web, and VAPOR will insert them at the correct world coordinates.
  - VAPOR provides a shell script “getWMSImage.sh” that can be used to retrieve Web Mapping Service images for a specified longitude/latitude rectangle
- Also, several useful images are installed with vapor; e.g. state or national boundary maps, NASA’s Blue Marble image of the earth.
- From the image panel, specify the image file, apply to terrain.
Create derived variables with Python

- From the Edit menu, “Edit Python program defining a new variable”
- Use Python script editor to define variables as arithmetic expressions of other variables.
- Variables are evaluated and cached as needed for visualization
- Python functions are also provided to derive several useful variables from WRF data; e.g. cloud-top temperature, relative humidity, potential vorticity, sea-level pressure, dewpoint temperature, radar reflectivity, equivalent potential temperature, wind shear, temperature in degrees Kelvin.
VAPOR / NCL

http://www.vapor.ucar.edu/sites/default/files/docs/VAPOR-WRF-NCL.pdf
Integrated Data Viewer

Yuan Ho and Julien Chastang
Unidata Program Center/UCAR
Unidata IDV – What can it do?
Unidata IDV – What can it do?
Unidata IDV – What is it?

- **Unidata Integrated Data Viewer**
  - 2D and 3D visualization
    - GUI or scripting (Jython, ISL) interface
  - Interactive probes for dataset exploration
    - Parameter readouts, vertical profiles, time/height displays, etc.
  - A rich set of analysis capabilities
  - Integrate model and observational data
  - Access local and remote datasets
  - Visualize and analyze post-processed WRF output
    - works best if grid is unstaggered
Supported Data Sources

- **Data Types:**
  - Gridded model output
  - Satellite imagery
  - Radar data
  - Point observations
  - Balloon soundings
  - NOAA Profiler Network winds
  - Aircraft Tracks
  - Fronts
  - GIS data (WMS, shapefile)
  - Quick Time movies
  - Web Cams

- **Vertical Coordinates**
  - Pressure
  - Height/Depth
  - Other (2D only)

- **Sample of Supported Formats:**
  - netCDF
  - GRIB
  - Vis5D
  - KML
  - CSV
  - GEMPAK grid
  - ADDE

- **Access Methods:**
  - Local files
  - HTTP
  - ADDE, TDS and OPeNDAP servers
  - WMS

---

**ADDE** = Abstract Data Distribution Environment

**TDS (THREDDS)** = Thematic Realtime Environmental Distributed Data Services
Unidata IDV – Where to get it?

- [https://www.unidata.ucar.edu/software/idv](https://www.unidata.ucar.edu/software/idv)
  - Point-and-click installers
  - Windows (.exe), Mac (.dmg), and Linux (.sh) installers available for both 32 and 64-bit systems

**System requirements:**
- 2+ GB RAM
- Java 1.6
- *Latest* video card driver