Real

Description of General Functions

Dave Gill
gill@ucar.edu
Real program in a nutshell

- Function
- Standard input variables
- Base State
- Standard generated output
- Vertical interpolation
- Soil level interpolation
- Nested processing
Real program in a nutshell

• Function
• Standard input variables
• Base State
• Standard generated output
• Vertical interpolation
• Soil level interpolation
• Nested processing

Loads of definitions …
Real program in a nutshell

- Function
- Standard input variables
- Base State
- Standard generated output
- Vertical interpolation
- Soil level interpolation
- Nested processing

What are the required, optional variables?
From whence do they come?
What are the restrictions on metgrid vertical coordinates?
Real program in a nutshell

- Function
- Standard input variables
- **Base State**
- Standard generated output
- Vertical interpolation
- Soil level interpolation
- Nested processing

What defines the base state?
Real program in a nutshell

- Function
- Standard input variables
- Base State
- Standard generated output
- Vertical interpolation
- Soil level interpolation
- Nested processing

What are the mandatory files for success?
Real program in a nutshell

• Function
• Standard input variables
• Base State
• Standard generated output
• Vertical interpolation
• Soil level interpolation
• Nested processing

How does the user change the vertical coordinate?
Are there recommendations?
Real program in a nutshell

- Function
- Standard input variables
- Base State
- Standard generated output
- Vertical interpolation
- Soil level interpolation
- Nested processing

Why is the surface layer scheme special compared to the other physics options?
Real program in a nutshell

- Function
- Standard input variables
- Base State
- Standard generated output
- Vertical interpolation
- Soil level interpolation
- Nested processing

What is required in real to do nesting in WRF?
What is optional in real to do nesting in WRF?
Function

- The WRF model pre-processor is `real.exe`
- The real.exe program is available `serial` or `DM parallel` (primarily for aggregate memory purposes, as opposed to timing performance)
- This program is automatically generated when the model is built and the requested use is for a real data case
- The real.exe program takes data from WPS and transforms the data for WRF
- Similar to the ARW idealized data pre-processor, real.exe is tightly coupled to the WRF model through the Registry
Function

- 3D forecast or simulation
- Meteorological input data that primarily originated from a previous forecast or analysis, probably via the WPS package
- Anticipated utilization of physics packages for microphysics, surface conditions, radiation, convection, and boundary layer (maybe usage of nudging capabilities)
Function

• A non-Cartesian *projected domain*
 – Lambert conformal, Mercator, polar stereographic, rotated latitude/longitude (global or regional)

• Selection of *realistic static fields* of topography, land use, vegetation, and soil category data

• Requirement of *time dependent* lateral boundary conditions for a regional forecast
Function

- Generation of *diagnostics* necessary for assumed WRF model input
- Input field *adjustment* for consistency of static and time dependent fields (land mask with soil temperature, etc.)
- ARW: computation of *reference* and *perturbation* fields
- Generation of *initial* state for each of the requested domains
- Creation of a *lateral boundary file* for the most coarse domain
- *Vertical interpolation* for 3d meteorological fields and for sub-surface soil data
Standard Input Variables

- The metgrid program typically provides meteorological data to the real program.

- **Coordinate:**
 - The real program is able to input and correctly process any *strictly monotonically oriented* vertical coordinate
 - Isobaric: OK
 - Sigma: OK
 - Hybrid: OK
Standard Input Variables

• The metgrid program typically provides meteorological data to the real program.

• Mandatory:
 – 3d and surface: horizontal winds, temperature, relative humidity, geopotential height
 – 3d soil: soil temperature
 – 2d fields: surface pressure, sea-level pressure, land mask

• Optional (but desirable):
 – 3d soil: soil moisture
 – 2d fields: topography elevation of input data, SST, sea-ice, skin temperature
Base State

- Several of the mass-point fields are separated into a time-independent base state (also called a reference state) and a perturbation from the base state.
- The base state fields are only functions of the topography and a few user-selectable constants.
- If the topography changes, such as with a moving nest, the base state fields are modified.
- Feedback for 2-way nesting also impacts base state fields through topographic averaging.
- No base state computations are required prior to the real program.
For regional forecasts, the real program generates both an initial (`wrfinput_d01`) and a lateral boundary (`wrfbdy_d01`)

The boundary file is not required for global forecasts with ARW

The initial condition file contains a single time period of data

These files contain data used directly by the WRF model

The initial condition file may be ingested by the WRFDA code (referred to as a `cold-start`)

If n times were processed with WPS and real, the lateral boundary file contains $n-1$ time slices
Lateral Boundary Condition Times

0 6 12 18 24 30 36 h

1 2 3 4 5 6

Time periods from WPS

Time slices from WPS

Boundary tendency steps
Lateral Boundary Condition Times

Time periods from WPS

Time slices from WPS

Boundary tendency steps

<table>
<thead>
<tr>
<th>n-1</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>36 h</td>
<td></td>
</tr>
</tbody>
</table>
Real-Data Lateral Boundary Condition: Location of Specified and Relaxation Zones

- Specified Rows
- Specified Columns
- Relaxation Rows
- Relaxation Columns

North:
- N=1
- N=2
- N=3
- N=4
- N=5

South:
- N=1
- N=2
- N=3
- N=4
- N=5

West:
- 1
- 2
- 3
- 4
- 5

East:
- 1
- 2
- 3
- 4
- 5
A number of vertical interpolation options are available to users.

The options can have a significant impact on the initial conditions passed to the model.

More information is contained in the info file `README.namelist` in the `run` directory.

Options are located in the `&domains` namelist record of `namelist.input`.
Vertical Interpolation

- Impact: Expected region of changes
- Non-standard setting
- Which level is being viewed

- Topography and domain for difference plots, 160x140, 4 km, input = 40 km NAM
Vertical Interpolation

- Impact: few lowest levels only
- force_sfc_in_vinterp = 0
- \(\eta \) level 1

- Theta (-8 K blue, 0 K yellow)
- U (-3 m/s blue, 2 m/s red)
Vertical Interpolation

- Impact: few lowest levels only
- \texttt{force_sfc_in_vinterp} = 6
- \eta level 4

- Theta (0 K blue, 10 K red)
- U (-5 m/s blue, 6 m/s red)
Vertical Interpolation

- Impact: above first 4 levels, most near tropopause
- $\text{lagrange_order} = 2$
- η level TOP

- $\text{Theta (0.7 K blue, 1.6 K red)}$
- $\text{U (0.4 m/s blue, 1.4 m/s red)}$
Vertical Interpolation

- Impact: lowest level only
- $\text{lowest}_\text{lev}_\text{from}_\text{sfc} = T$
- η level 1

- Theta (-10 K blue, 8 K red)
- U (-3 m/s blue, 7 m/s red)
Vertical Interpolation

- Impact: outer few rows and column, amplitude damps upward
- smooth_cg_topo = T
- \(\eta \) level 1

- \(\bar{\theta} \) (\(-10 \text{ K blue, 9 K red}\))
- \(U \) (\(-6 \text{ m/s blue, 6 m/s red}\))
Vertical Interpolation

- Impact: lowest few levels
- use_surface = F
- \eta\ level 1

- \theta\ (-11\ K\ blue,\ 0\ K\ red)
- U\ (-3\ m/s\ blue,\ 4\ m/s\ red)
Vertical Interpolation

Make sure input data is vertically ordered as expected.
Input 3-D pressure and T, topo, Z, moisture used to compute total surface pressure.
Compute target vertical coordinate using normalized dry column pressure.
User specifies the selected \(\eta \) surfaces in the namelist (or can be computed).
Vertically interpolate input fields in pressure to the \(\eta \) surfaces in dry pressure: default all variables log.
Vertical Interpolation

- Select reasonable η levels, or let the real program do it for you
- Verify that the “thicknesses” are acceptable, generally about the same value in the free-atmosphere and less than 1000 m
- It is SAFEST to NOT initially choose η values
 - Initially, select the number of η levels
 - Plot profiles of the resultant heights
 - Adjust the η levels accordingly

- A few namelist options, the terrain elevation, and eta levels completely define the model coordinate for the WRF code
Vertical Interpolation

• Adjusted with a few parameters:

&domains
 e_vert = 50, 50, 50
 p_top_requested = 1000,

&dynamics
 base_temp = 290.
 iso_temp = 200
Vertical Interpolation

Vertical cross sections of model height field, with 50 vertical levels and ptop = 10 hPa, above the PBL.

Uniform layers Exaggerated Stretching

720-820 m
Physical Parameterization Settings

• The real program and the WRF model are tightly coupled
• Most physical parameterization settings in the namlist.input are IGNORED by real
• EXCEPT
 – sf_surface_physics
 – Land surface model (processes soil temperature and soil moisture)
 – Different schemes in WRF use differing numbers of layers
 – The layers are defined in real from the metgrid output
Soil Level Interpolation

• The WRF model supports several Land Surface schemes:
 – `sf_surface_physics = 1`, Slab scheme
 – 5 layers
 – Defined with thicknesses: 1, 2, 4, 8, 16 cm

<table>
<thead>
<tr>
<th>Layers</th>
<th>Mid point</th>
<th>Noah</th>
<th>RUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 – 010 cm</td>
<td>005 cm</td>
<td>000</td>
<td>000</td>
</tr>
<tr>
<td>010 – 040 cm</td>
<td>025 cm</td>
<td>005</td>
<td>005</td>
</tr>
<tr>
<td>040 – 100 cm</td>
<td>070 cm</td>
<td>020</td>
<td>040</td>
</tr>
<tr>
<td>100 – 200 cm</td>
<td>150 cm</td>
<td>040</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>300</td>
</tr>
</tbody>
</table>
Soil Level Interpolation

- The WRF model supports several Land Surface schemes:
 - `sf_surface_physics = 2`, Unified Noah scheme
 - 4 layers
 - Defined with layers: 0-10, 10-40, 40-100, 100-200 cm

<table>
<thead>
<tr>
<th>Layers</th>
<th>Mid point</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 – 010 cm</td>
<td>005 cm</td>
<td>000 cm</td>
</tr>
<tr>
<td>010 – 040 cm</td>
<td>025 cm</td>
<td>005 cm</td>
</tr>
<tr>
<td>040 – 100 cm</td>
<td>070 cm</td>
<td>020 cm</td>
</tr>
<tr>
<td>100 – 200 cm</td>
<td>150 cm</td>
<td>040 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>160 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300 cm</td>
</tr>
</tbody>
</table>
Soil Level Interpolation

• The WRF model supports several Land Surface schemes:
 – sf_surface_physics = 3, RUC scheme
 – 6 levels
 – Defined at levels: 0, 5, 20, 40, 160, 300 cm

<table>
<thead>
<tr>
<th>Layers</th>
<th>Mid point</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 – 010 cm</td>
<td>005 cm</td>
<td>000 cm</td>
</tr>
<tr>
<td>010 – 040 cm</td>
<td>025 cm</td>
<td>005 cm</td>
</tr>
<tr>
<td>040 – 100 cm</td>
<td>070 cm</td>
<td>020 cm</td>
</tr>
<tr>
<td>100 – 200 cm</td>
<td>150 cm</td>
<td>040 cm</td>
</tr>
<tr>
<td>100 – 200 cm</td>
<td>150 cm</td>
<td>160 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300 cm</td>
</tr>
</tbody>
</table>
Soil Level Interpolation

- The WRF model supports several Land Surface schemes:
 - sf_surface_physics = 7, PX scheme
 - 2 layers
 - Defined with layers: 0-1, 1-100 cm

<table>
<thead>
<tr>
<th>Layers</th>
<th>Mid point</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 – 010 cm</td>
<td>005 cm</td>
<td>000 cm</td>
</tr>
<tr>
<td>010 – 040 cm</td>
<td>025 cm</td>
<td>005 cm</td>
</tr>
<tr>
<td>040 – 100 cm</td>
<td>070 cm</td>
<td>020 cm</td>
</tr>
<tr>
<td>100 – 200 cm</td>
<td>150 cm</td>
<td>040 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>160 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300 cm</td>
</tr>
</tbody>
</table>
Nested Processing

- May read **multiple domain input files** from metgrid
- Requires only the **initial time for the fine domains**, unless doing nudging or SST update

- **No horizontal interpolation from parent to child**

- No consistency checks between domains (handled in the feedback step for the WRF model)
- A `wrfinput_d0x` file is created for each processed input domain
- A **lateral boundary file** is created only for the most coarse domain
Real program in a nutshell

• Function
• Required input variables
• Base State
• Standard generated output
• Vertical interpolation
• Soil level interpolation
• Nested processing
Real program in a nutshell

- Function
- Standard input variables
- Base State
- Standard generated output
- Vertical interpolation
- Soil level interpolation
- Nested processing

What are the required, optional variables?

From whence do they come?

What are the restrictions on metgrid vertical coordinates?
Real program in a nutshell

- Function
- Standard input variables
- **Base State**
- Standard generated output
- Vertical interpolation
- Soil level interpolation
- Nested processing

What defines the base state?
Real program in a nutshell

- Function
- Standard input variables
- Base State
- **Standard generated output**
- Vertical interpolation
- Soil level interpolation
- Nested processing

What are the mandatory files for success?
Real program in a nutshell

- Function
- Standard input variables
- Base State
- Standard generated output
- **Vertical interpolation**
- Soil level interpolation
- Nested processing

How does the user change the vertical coordinate?

Are there recommendations?
Real program in a nutshell

• Function
• Standard input variables
• Base State
• Standard generated output
• Vertical interpolation
• Soil level interpolation
• Nested processing

Why is the surface layer scheme special compared to the other physics options?
Real program in a nutshell

- Function
- Standard input variables
- Base State
- Standard generated output
- Vertical interpolation
- Soil level interpolation
- Nested processing

What is required in real to do nesting in WRF?

What is optional in real to do nesting in WRF?
Hegh!

(as close as possible, Klingon for *finis*)