WRFDA
Background Error Estimation

Syed RH Rizvi
National Center For Atmospheric Research
NCAR/ESSL/MMM, Boulder, CO-80307, USA
rizvi@ucar.edu
Talk overview

• What is Background Error (BE) ?
• Some properties of BE
• Role of BE in WRFDA
• Various components of BE
• Impact of BE on minimization and forecasts
• How to compute (“gen_be” utility)?
• Single Observation Test
• Upcoming new features
• Introduction to Practice Session
What is BE?

- The BE covariance matrix describes the probability distribution function (PDF) of forecast errors, assumed Gaussian.
- BE is the covariance of (forecast - truth) in analysis control variable space.
 \[BE = \langle (x-x^t), (x-x^t)^T \rangle \]
- Since truth \(x^t \) is not known, it needs to be estimated.
- Common methods for estimating BE:
 - Innovation Method
 - NMC Method: \((x-x^t) \approx (x^{t1} - x^{t2}) \)
 (Forecast differences valid for the same time)
 - Ensemble Method: \((x-x^t) \approx (x^{ens} - <x^{ens}>) \)
 \[= (\text{Ensemble} - \text{Ensemble mean}) \]
Some properties of BE

- B matrix is square and symmetric. Thus, its eigenvalues are all real and eigenvectors are mutually orthogonal.
- It is positive semi-definite. Thus, its eigenvalues are all non-negative. It is very important property because without this minimum of the cost function may not exist.
- It consists of correlation (C) and variance (Σ) parts, \(B = Σ C Σ \).
- If V is an orthogonal matrix \((V^T V = I) \) transforming vector X to U \((U = VX) \), then the background error for X (B) and of U (B_u) will be related as \(B_u = V^T B V \).
- A special representation of B is the eigen-representation, where \(B_u \) is diagonalized. Eigenvectors of B forms the columns of V and the eigenvalues of B are the diagonal elements of \(B_u \).
Role of BE

- B spreads information, both vertically & horizontally with proper weights to observations and FG. This effect may be understood by introducing a single observation of one (kth) element of x in the analysis equation

$$x^a = x^b + BH^T(HBH^T + R)^{-1}[y^o - H(x^b)]$$

In this case H or H is a row vector with all elements zero except the kth, which is = 1 and $y^o = y$; $R = \sigma^2$. Thus analysis equation gives,

$$x^a_l = x^b_l + B_{lk} \frac{y - x^b_k}{B_{kk} + \sigma^2} = x^b_l + \frac{B_{lk}}{B_{kk} + \sigma^2} y - \frac{B_{lk}}{B_{kk} + \sigma^2} x^b_k$$

Thus non-zero off-diagonal terms for B leads to analysis increment for lth element

- In data assimilation, this is not the only mechanism of spreading the information. Observation operators (H & H) also does this job

- If $\sigma^2 << B_{kk}$; $x^a_k \approx y$ and if $\sigma^2 >> B_{kk}$; $x^a_k \approx x^b_k$

Thus if BE is very large compared to observation error, analysis is closer to observation otherwise it is closer to FG
Role of BE

• B matrix spreads information between variables and imposes balance.
• Since B is the last operator in the analysis equation, the analysis increments lies in the subspace of B.
• B provides a means by which observations can act in synergy. B allows observations to reinforce each other in a way that improves the analysis to a degree that is greater than their individual contributions.
• B is used for preconditioning the analysis equation.
How BE is represented in WRFDA?

• It is represented with a suitable choice of U as follows

\[B = U^T U \quad \text{with} \quad U = U_p U_v U_h \]

- U_h Horizontal Transform
- U_v Vertical Transform
- U_p Physical Transform

• Horizontal transformation (U_h) is via
 - Regional ----- Recursive filters
 - Global ----- Power spectrum

• Vertical transformation (U_v) is via EOF’s

• Physical transformation (U_p) depends upon the choice of the analysis control variable
How BE is represented?

- Size of B is typically of the order of $10^7 \times 10^7$
- It is reduced by designing the analysis control variables in such a way that cross covariance between these variables are minimum
- Currently, analysis control variables for WRFDA are the amplitudes of EOF’s of

 stream function (ψ)
 Unbalanced part of velocity potential (χ_u)
 Unbalanced part of temperature (T_u)
 Relative Humidity (q)
 Unbalanced part of surface pressure (p_{s_u})

- With this choice of analysis control variables off-diagonal elements of BE is very small and thus its size typically reduces to the order of 10^7
How BE is represented?

Contd.

\[B = U_h^T U_v^T U_p^T U_p U_v U_h \]
Components of BE

• Regression Coefficient for balanced part of Velocity potential, Temperature and Surface pressure

• Eigen vectors and Eigen values for stream function, unbalanced velocity potential, unbalanced temperature and moisture field

• Horizontal length-scales of control variables for regional option
• Power spectrum of control variables for global option
Impact of BE on Minimization

Cost function minimization for CONUS 200 Km domain

- **Good BE**
 - Iterations vs. Cost
 - Gradient vs. Iterations

- **Bad BE**
 - Iterations vs. Cost
 - Gradient vs. Iterations
Impact of BE on Temperature forecast

12 hr f/c bias/RMSE for Sound T

Exp A: 6 Hr cycling with old BE
Exp B: 6 Hr cycling with new BE
Impact of BE on Temperature forecast

24 hr f/c bias/RMSE for Sound T

Exp A: 6 Hr cycling with old BE
Exp B: 6 Hr cycling with new BE
Impact of BE on Wind (U Comp.) forecast

12 hr f/c bias/RMSE for Sound U-comp

Exp A: 6 Hr cycling with old BE
Exp B: 6 Hr cycling with new BE
Impact of BE on Wind (U Comp.) forecast

24 hr f/c bias/RMSE for Sound U-comp

Exp A: 6 Hr cycling with old BE
Exp B: 6 Hr cycling with new BE
WRFDA “gen_be” utility:

- It resides in WRFDA under “var” directory
- Computes various components of BE statistics
- Designed both for NMC and Ensemble methods (“BE_METHOD”)
- It consists of five stages
- Basic goal is to estimate the error covariance in analysis control variable space (Coefficients of the EOF’s for ψ, χ_u, T_u, rh and p_{s_u}) with input from model space (U, V, T, q & P_s)
“gen_be” - Stage0

- Computes (ψ, χ) from (u,v)
- Forms desired differences for the following fields

ψ - Stream Function
χ - Velocity potential
T - Temperature
q - Relative Humidity
p_s - Surface Pressure
“gen_be” - Stage1

• Reads “gen_be_stage1” namelist
• Fixes “bins” for computing BE statistics
• Computes “mean” of the differences formed in stage0
• Removes respective “mean” and forms perturbations for

Stream Function \((\psi')\)
Velocity potential \((\chi')\)
Temperature \((T')\)
Relative Humidity \((q')\)
Surface Pressure \((p_s')\)
“gen_be” - Stage2 & 2a

- Reads “gen_be_stage2” namelist
- Reads field written in stage1 and computes covariance of the respective fields
- Computes regression coefficient & balanced part of χ, T & p_s

\[
\begin{align*}
\chi_b &= C \psi' \\
T_b(k) &= \sum_l G(k,l) \psi'(l) \\
p_{s_b} &= \sum_l W(k) \psi'(k)
\end{align*}
\]

- Computes unbalanced part

\[
\begin{align*}
\chi_u' &= \chi' - \chi_b \\
T_u' &= T' - T_b \\
p_{s_u'} &= p_s' - p_{s_b}
\end{align*}
\]
WRFDA Balance constraints

- WRFDA imposes statistical balanced constraints between Stream Function & Velocity potential
 Stream Function & Temperature
 Stream Function & Surface Pressure

- How good are these balanced constraints?

\[
\frac{\langle \chi_b \cdot \chi \rangle}{\langle \chi \cdot \chi \rangle} \quad \frac{\langle T_b \cdot T \rangle}{\langle T \cdot T \rangle} \quad \frac{\langle p_{sb} \cdot p_s \rangle}{\langle p_s \cdot p_s \rangle}
\]

Computed based on KMA global model
“gen_be” - Stage3

- Reads “gen_be_stage3” namelist

- Removes mean for χ_u, T_u & p_{s_u}

- Computes eigenvectors and eigen values for vertical error covariance matrix of ψ, χ_u, T_u & q

- Computes variance of p_{s_u}

- Computes eigen decomposition of ψ, χ_u, T_u & q
“gen_be” - Stage4

- Reads “gen_be_stage4” namelist
- For each variable & each eigen mode, for regional option computes “lengthscale (s)"

\[
B(r) = B(0) \exp\left\{-\frac{r^2}{8s^2}\right\}
\]

\[
y(r) = 2\sqrt{2}[\ln(B(0)/B(r))]^{\frac{1}{2}} = \frac{r}{s}
\]

- For global option, computes “power spectrum (D_n)"

\[
D_n = \sum_{m=-n}^{n} \left(F_n^m \right)^2 = \left(F_n^0 \right)^2 + 2 \sum_{m=1}^{n} \left[\left(\text{Re}(F_n^m) \right)^2 + \left(\text{Im}(F_n^m) \right)^2 \right]
\]
Single observation test

- Through single observation test, one can understand
 - structure of BE
 - It identifies the “shortfalls” of BE
 - It gives a broad guidelines for tuning BE

Basic concept:

Analysis equation:

\[x^a = x^b + B H^T (H B H^T + R)^{-1} [y^o - H(x^b)] \]

Set single observation (U,V,T etc.) as follows:

\[[y^o - H(x^b)] = 1.0 \quad ; \quad R = I \]

Thus,

\[x^a - x^b = B \times \text{constant delta vector} \]
How to activate Single obs test (PSOT)?

“single obs utility” or “psot” may be activated by setting the following namelist parameters

num_pseudo = 1
pseudo_var = "Variable name" like "U", "T", "P", etc.
pseudo_x = "X-coordinate of the observation"
pseudo_y = "Y-coordinate of the observation"
pseudo_z = "Z-coordinate of the observation"
pseudo_val = "Observation innovation", departure from FG"
pseudo_err = "Observation error"
Single Obs (U) test with different BE
How to perform tuning of BE?

• Horizontal component of BE can be tuned with following namelist parameters

LEN_SCALING1 - 5 (Length scaling parameters)
VAR_SCALING1 - 5 (Variance scaling parameters)

• Vertical component of BE can be tuned with following namelist parameter

MAX_VERT_VAR1 - 5 (Vertical variance parameters)
Results with BE Tuning

No tuning
PSOT – u

Len Scaling 1 & 2 = 0.25
PSOT – u
Multivariate formulation of BE

- New set of analysis control variables (cv_options=6) have been designed

\[\chi_b(i, j, k) = \alpha_{\chi\psi} \psi(i, j, k) \]

\[T_b(i, j, k) = \sum_{l=1}^{N_k} \alpha_{T\psi}(i, j, k, l) \psi(i, j, k, l) + \sum_{l=1}^{N_k} \alpha_{T\chi}(i, j, k, l) \chi_u(i, j, l) \]

\[Q_b(i, j, k) = \sum_{l=1}^{N_k} \alpha_{Q\psi}(i, j, k, l) \psi(i, j, l) + \sum_{l=1}^{N_k} \alpha_{Q\chi}(i, j, k, l) \chi_u(i, j, l) + \]

\[\sum_{l=1}^{N_k} \alpha_{Q\psi}(i, j, k, l) T_u(i, j, l) + \sum_{l=1}^{N_k} \alpha_{P\psi}(i, j, l) P_s(i, j) \]

\[P_s(i, j) = \sum_{l=1}^{N_k} \alpha_{P\psi}(i, j, l) \psi(i, j, l) + \sum_{l=1}^{N_k} \alpha_{P\chi}(i, j, l) \chi_u(i, j, l) \]

Indexes i, j and k are corresponding to West-East, North-South and vertical sigma levels respectively, \(N_k \) is the number of sigma levels and \(\alpha \) is the regression coefficient between the variables indicated in its subscript.
Single Obs (Moisture) test

cv_options=5, BE

Cv_optins=6, BE
Upcoming new features

- Some filtering options at various stages
- Background error for cloud hydrometeors like cloud water vapor, ice, snow and rain
- Introduction of new “bin_type=7” for four types of “rain” categories
- Additional diagnostics to study the frequency distribution of background error statistics
- Implementation of Holm (2002) type background error
- Stand alone branch of “gen_be”
Advanced Practice Session – “gen_be”

- Compilation of “gen_be” utility
- Generation of BE statistics
- Familiarization with various graphical utilities to display “gen_be” diagnostics
- Running single observation tests to understand the structure of BE
- BE error tuning
Generation of BE

- "gen_be_wrapper.ksh" script for generating BE for "CONUS" at 200 Km domain with:

 Grid Size : 45 x 45 x 28
 BE Method : NMC Method
 Data Input : January, 2007 forecasts, both from 00 & 12 UTC IC

Basic environment variables that needs to be set are:
- Gen_be executables location (WRFVAR_DIR)
- Forecast input data (FC_DIR)
- Run directory (BE_DIR)
- Data Range (START_DATE, END_DATE)

"gen_be" wrapper script basically executes "var/scripts/gen_be/gen_be.ksh" script
Gen_be diagnostics

- “gen_be” creates various diagnostic files which may be used to display various components of BE statistics.
- Important files are:
 - Eigen vectors: fort.174, fort.178, fort.182, fort.186
 - Eigen values: fort.175, fort.179, fort.183, fort.187
 - scalelength: fort.194, fort.179, fort.183, fort.187
 - Correlation between χ_u & χ_b (chi_u.chi.dat)
 - Correlation between T_u & T_b (T_u.T.dat)
 - Correlation between p_{s_u} & ($p_{s_u}.ps.dat$)

Important Strings that needs to be defined in the wrapper script
“var/script/gen_be/gen_be_plot_wrapper.ksh”

BE_DIR --- gen_be Run directory
How to run Single Observation Test?

- Familiarization with single observation “wrapper” script (“da_run_suite_wrapper_con200.ksh”) to run Single Observation test
- Key parameters are:
 - Type of observation (pseudo_var)
 - Obs co-ordinates (pseudo_x, pseudo_y & pseudo_z)
 - Observation value (pseudo_val)
 - Observation error (pseudo_err)
- Display analysis increments to understand BE structure
BE tuning

- Understand the role of BE-tuning parameters through namelist options

LEN_SCALING1 - 5 (Length scaling parameters)
VAR_SCALING1 - 5 (Variance scaling parameters)
MAX_VERT_VAR1 - 5 (Vertical variance parameters)

Note: If BE is available for the same domain configuration then it’s tuning is not required