
Note 1: Refer to 1.1 Computation (Next Page)

Note 2: Gridded value contains the “greatest of” the polar cells that map
into the grid box.

4.0 PRODUCT GENERATION ALGORITHMS

Detailed information on certain algorithms required by various processing functions defined in 3 of
this specification are provided in this Appendix as follows:

Function Algorithm Subsection

Precipitation Analysis Weak Echo Region 4.1

Product Synthesis Contour 4.2

Product Synthesis Polar to Grid Conversion 4.3

Product Compression Run Length Encoding 4.4

Product Synthesis Cross-Section 4.5

Product Synthesis Polar/LFM Conversion 4.6

4.0 Weak Echo Region Product A1gorithm Procedures

4.1 Algorithm

Begin Algorithm (Weak Echo)

1.0 Do For All (Weak Echo Products)
1.1 Identify Storm

1.2 Generate 50 by 50-km grid centered at x,y centroid position of storm

1.3 Do For All (Storm Components)

1.3.1 Compute storm motion correction (See Note 1)

1.3.2 Identify base reflectivity data within 50 by 50 window

1.3.3 Convert base data levels into three data levels (e.g., 32, 40 and 50 dBz)

1.3.4 Project data onto 50 by 50 grid (on flat earth surface) correcting for storm
motion (See Note 1) (See Note 2)

End Do

1.4 Do For All (Planes)

1.4.1 Perform Isometric Projection

End Do

Note 3 : For more detail on polar to Cartesian conversion, refer to

XCORRi%n' &[&SIN(DS)](SS)(Ti%n&Ti)

YCORRi%n' &[&cos(DS)](SS)(Ti%n&Ti)

End Do

End Algorithm (Weak Echo)

4.1 Computation

1.3.1 Compute (Storm Motion Correction)

where,
n = number of elevations above lowest storm component elevation i.
Time (T) = time at which data was collected in hours.
Direction (DS) = direction from which a storm is moving in radians.
Speed (SS) = speed of a storm in km/hr.

1.3.4 Compute (Polar to Grid Conversion) (See Note 3)

! Get start/stop location of azimuth and range for base data

! Calculate sine and cosine for the current azimuth

ST = sin (2)
CT = cos (2)

! For each azimuth, identify in what zones do the start/stop ranges apply.

Zone 1 = Range # 57 km
Zone 2 = Range # 114 km
Zone 3 = Range # 171 km
Zone 4 = Range # 230 km

! For those zones identified, perform the following angle computations (Figure 4-1):

Zone 1: No additional computation

Zone 2:
ST3A = sin(2 ! 1/4°) = ST ! CT(0.0043633)
ST3B = sin(2 + 1/4°) = ST + CT(0.0043633)
CT3A = cos(2 + 1/4°) = CT + ST(0.0043633)
CT3B = cos(2 ! 1/4°) = CT ! ST(0.0043633)

Zone 3:
ST4A = sin(2 - 1/3°) = ST - CT (0.058178)
ST4B = sin(2) = ST
ST4C = sin(2 + 1/3°) = ST + CT(0.058178)
CT4A = cos(2 - 1/3°) = CT + ST(0.058178)
CT4B = cos(2) = CT
CT4C = cos(2 + 1/3°) = CT - ST(0.058178)

Zone 4:
ST5A = sin(2 - 3/8°) = ST - CT(0.0065450)
ST5B = sin(2 - 1/8°) = ST - ST(0.0021817)
ST5C = sin(2 + 1/8°) = ST + CT(0.0021817)
ST5D = sin(2 + 3/8°) = ST + CT(0.0065450)
CT5A = cos(2 - 3/8°) = CT + ST(0.0065450)
CT5B = cos(2 - 1/8°) = CT + ST(0.0021817)
CT5C = cos(2 + 1/8°) = CT - ST(0.0021817)
CT5D = cos(2 + 3/8°) = CT - ST(0.0065450)

! Compute Constants

x=1
y=1
MULT = SF/GBS
Constant = DR * cos(2)
........
x-constant = [constant + XCORR + Offset] * MULT

........
y-constant = [constant + YCORR + Offset] * MULT

........
! Do For All (Azimuths)

IF (Zone 1) Then

dx = integer [x-constant * ST]
dy = integer [y-constant * CT]

Do For All (Zone 1 cells)

y = y + dy
x = x + dx
Box (XH(1), YH(1) =

End Do
End IF

IF (Zone 2) Then

dx1 = integer [x-constant * ST3A]
dx2 = integer [x-constant * ST3B]
dy1 = integer [y-constant * CT3A]
dy2 = integer [y-constant * CT3B]

Do For All (Zone 2 Cells)

yl = yl + dy1

y2 = y2 + dy2
x1 = x1 + dx1
x2 = x2 + dx2
Box (XH1(1), YH1(1)) =
Box (XH2(1), YH2(1)) =

End Do

End IF

IF (Zone 3) Then

........Logic identical to Zone 2

End IF

IF (Zone 4) Then

........Logic identical to Zone 2

End IF

End Do

4.2 Contour

4.2.1 Algorithm Description

The Contouring Algorithm, applied to all NEXRAD contour products, utilizes multiple passes of
input grid smoothing. interpolation between adjacent grid-point values, and output data filtering in
order to generate contour paths at the levels specified by the contour base and interval, in linked-
vector format.

First, the amount of scratch buffer space needed for smoothing, and for auxiliary arrays used
during the contouring process. is determined as a function of the number of gridpoints in each
dimension of the field being contoured. Once the scratch buffer space is acquired. several passes of
smoothing are performed on be input grid field.

The preliminary, or zeroeth, pass is only performed when the combination of the product resolution
and coverage area yields a grid size of greater than 116 points in each direction. During this pass,
each set of four points, representing the corners of a square, is averaged in isolation from all
neighboring sets of points, with the results being stored at the midpoints of the squares. The
averaging is performed in the biased, integer units in which the particular field being contoured is
represented internally, with only those gridpoints containing valid data values (i.e., not flagged
'Below Thresholds ', 'No Data', etc.) included in the averaging. If more than half (i.e., three or
more) of the points contributing towards an average contain flag values, a flag value is, in turn,
stored as the result. At the completion of this pass of the smoothing, the original grid dimensions
will have been reduced by 2:1 in each direction.

The first and second smoothing passes are performed on all products, in a manner similar to that
described above (i.e., four-point averages using only non-flagged points. with the results, or a flag,
stored at the midpoints. etc.). although now with continuity achieved between adjacent gridpoints.
This is accomplished by having each point contribute towards the averages of each of the squares
which it corners (i.e., each interior point contributes towards four averages; each border point
towards two; and each point at the corners of the grid domain towards one). There is no gridpoint
reduction during these two passes. In fact, when considered together, these two passes return the
results to the same set of gridpoints at which they were represented at the start. The net effect of
these two passes is, in fact, a nine-point, centered average (for each interior gridpoint) using the
weights: 1,2,1 (row above gridpoint): 2,4,2 (row containing gridpoint); and 1,2,1 (row below
gridpoint). Along the borders, all points are set to a flag value which will always be below the
lowest possible contour value in biased, integer units.

At the end of the smoothing process, the maximum field value on the final, smoothed grid is
determined. It is retained in both biased, integer units and in the meteorological units commonly
associated with the field being contoured.

The Contour Table, containing the levels to be contoured, is now built from the contour base and
interval (which may be either site adaptable, user selectable, or internally set, depending on the
particular contour product). This is done by starting wizh the base and incrementing, successively,
by the interval until either the maximum field value is exceeded or the maximum number of
contour levels for the product is reached.

The amount of output buffer space needed, considering the maximum number of contour levels and
the grid size of the current product, as well as any space needed for product headers and
alphanumeric blocks, is now acquired. An estimate is then made of the size of the largest
conceivable contour for the product (in output buffer words), and this amount is subtracted from the
portion of the output buffer used for contouring in order to establish a Critically Full Level, which,
if exceeded, will cause processing to cease prematurely.

The contour levels are processed from lowest to highest, with all potential contours analyzed at each
level before proceeding to the next. The basic method involves the notion that the gridded data field
is superimposed on a pixel field of much higher resolution, on which the contours will be drawn,
separating regions above the contour value from regions below it. Each contour is initialized at a
pixel point which is between a pair of adjacent gridpoints in the same row, where one of the
gridpoints has a value greater than or equal to the contour value and the other has a value below it.
The exact location of the pixel is determined by linear interpolation of the contour value and the two
gridpoint values, and is identified in i,j coordinates relative to the grid-domain center, where i
corresponds to the X axis (i.e., moving along a row) and j corresponds to the negative Y axis (i.e,,
moving down a column).

The processing proceeds with the contour being assigned a Direction of Travel, determined on the
basis that as the contour is drawn, higher field values will always be kept to its right and lower field
values to its left. The Direction of Travel may thus be either North or South (if along a row axis) or
East or West (if along a column axis). The contour is also associated with a Reference Gridpoint
(I,J) on the gridded data field, which will always be the point to its immediate right, relative to its
Direction of Travel.

An iterative process is then undertaken whereby the contour is "drawn” by successively moving to
new locations while vectors, representing these moves, are stored in the product output buffer. This
is done by examination of several gridpoints ahead of and to the sides of the contour's current
location, in order to find another pair of points satisfying the condition that the one to the right is
greater than or equal to the current contour value while the one to the left is less than it (a
hierarchy of logic is used to determine the order in which the gridpoint pairs are searched, which
generally involves starting ahead and to the left of the current Reference Gridpoint and sweeping
clockwise). Once such a pair is found, linear interpolation is again employed to find the exact pixel
location of the contour value between the two gridpoint values, and the contour is moved to this
point (i.e., a linked vector is stored in the product output buffer with the point's i,j coordinates).
The contour's Direction of Travel and Reference Gridpoint are then updated in preparation for the
next move. This process continues until the contour returns to its initial location.

In order to avoid duplication of contour paths and, at the same time, guarantee that all possible
contours of a given level are analyzed, a Marker array is utilized which denotes the locations in all
rows where the condition exists that one of a pair of adjacent gridpoints is greater than or equal to
the current contour value while the other is less than it. This Marker array, which is in the form of
a bit map, is fully established at each level prior to the analysis of any contours at that level. It is
then used to identify starting locations of contours. Furthermore, as each contour is traced,
markers are cleared as they are passed, preventing the same path from being taken again. When
each contour is completed, the Marker array is re-examined and, if any markers remain, they are
used to identify new starting locations and to assist in the tracing of subsequent contours. This
process continues until all markers at the current contour level have been turned off, at which time
a new set of markers is established in preparation for processing the next level in the Contour Table
(if any).

Note 1: Computed as a function of adaptation data: Default = 6

Coincident with the above-described operations, a technique is employed to reduce processing time
by limiting the remaining portion of the grid field which needs to be examined as the analysis
proceeds to higher and higher contour levels. This is accomplished by the setting of Boundary
arrays so as to enclose the regions of the gridded field where contour analysis may still be
necessary, excluding regions where it has been determined that no more contours can be drawn.

Two more features are incorporated in an attempt to limit the size of the contour product buffers. A
Filter Level, set via adaptation data. is used to define the minimum size of contours (in number of
vector-moves) that will be retained in the output buffer. Any contour that is at or below this size
limit is discarded, which is accomplished by the resetting of pointers so as to erase the current
contour from the output buffer. (It should be noted that for contours that are retained. an
accompanying header field, and the starting position of the contour, are packed only at this time -
after the determination has been made to keep the contour.)

Finally. the previously referenced Critically Full Level is compared to the word count in the output
buffer after each valid contour is packed. If the Critically Full Level is exceeded. processing
immediately terminates, yielding a product which may exclude some of the higher-level contours.

4.2.2 Algorithm Inputs

Identification

INGRID Two-dimensional, input grid field to be contoured, with data values
represented in biased, integer units.

GRIDSIZE Size of input grid (i.e., number of gridpoints) in each of the X and Y
directions.

GRIDRES Resolution of input grid, in km.

THR_REDUC Grid size greater than which input grid field must be reduced during
smoothing (=116).

VALIDAT Valid Data Threshold. separating flag values from valid data values on the
particular grid field being contoured (=2: Comp. Refl; =1: Echo Tops; (See
Note 1): Comb. Shear).

BASE Contour Base. used to define lowest contour level. (Note: this will always be
above any 'Below Threshold' or 'No Data' levels.)

INTERVAL Contour Interval. i.e., interval by which the Base is successively
incremented to determine other contour levels.

SCALE Scaling factor used for internal representation of product data (=2: Comp.
Refl; =1: Echo Tops; =2: Comb. Shear).

BIAS_1 Offset factor used for internal representation of product data (=2: Comp.
Refl; =1: Echo Tops; =2: Comb. Shear).

BIAS_2 Biasing factor used for internal representation of product data (=32: Comp.
Refl; =0: Echo Tops; =0; Comb. Shear).

FILTLEV Contour Filter Level - Size up to which contours will be filtered from the
product output buffer. in number of vector-moves.

MAX_INPUT Maximum value on input grid, in biased integer units.
_VAL (particular to the field being contoured).

MAXLEVS Maximum number of levels to be contoured for the given product (=11:
Comp.

Figure 4-1. Beam Splitting Procedure

Figure 4-2. Cross-Section Intercepted Range (Top View)

Figure 4-3. Cross-Section Intercepted Grid (Side View)

Refl.; =11: Echo Tops; =5: Comb. Shear).

MAX_BUFSIZ Maximum allowable size for contour portion of output buffer, for any contour
product. in (32-bit) integer fullwords (=10,000; equivalent to 40,000 bytes).

Acquisition

BASE and INTERVAL are acquired from Adaptation Data, via User Request, or are internally
set, depending on the product:

! For Echo Tops Contour, the Base is set via adaptation data and the
Interval is user specified;

! For Composite Reflectivity Contour, the Base is set internally (at 20 dBz)
and the Interval is specified via adaptation data;

! For Combined Shear Contour, the Base is set equal to the Combined
Shear Threshold adaptable parameter used in the corresponding
algorithm, and the Interval is specified via algorithm adaptation data as
well.

FILTLEV is set via Adaptation Data.

INGRID and MAX_INPUT_VAL are derived fields generated by a preliminary algorithm in
each instance, and are passed to the Contouring algorithm via the calling, product-processing
task.

GRIDSIZE and GRIDRES are supplied via the product-processing task as calling arguments.

VALIDAT, SCALE, BIAS_1, BIAS_2, MAXLEVS, MAX_BUFSIZ and THR_REDUC are supplied
via the product-processing task as parameterized constants.

4.2.3 Algorithm Enunciation Language (AEL)

4.2.3.1 Procedure

BEGIN ALGORITHM (Contour)

1.0 ACQUIRE (Scratch Workspace)
1.1 IF (Successfully acquired) THEN

1.1.1 IF product gridsize exceeds threshold requiring reduction (THR_REDUC) THEN
2.0 DO FOR ALL. input grid rows (JG), by two

2.1 DO FOR ALL input grid columns (IG), by two
2.2 IF half, or more, of the (four) points given by the indices: {(IG,JG),

(IG+1,JG), (IG,JG+1), (IG+l,JG+1)} contain Valid Data values THEN
2.2.1 COMPUTE (Smooth Grid-0im,jm)

ELSE
2.2.2 SET (Smooth Grid-0im,jm) to flag value TEMPFLAG

END IF

2.3 STORE result at midpoint of the square represented by the four gridpoints
(note that total grid field size is reduced by 2:1 in each direction in this
smoothing pass)

END DO
END DO

END IF

3.0 DO FOR ALL rows (JS) of current grid field, from top to bottom-minus-one (i.e., in
increasing direction), by one

3.1 DO FOR ALL columns (IS) of current grid field, from left to right-minus-one
(i.e., in increasing direction) , by one

3.2 IF half. or more, of the (four) points given by the indices:
{(IS,JS),(IS+1,JS),(IS,JS+1),(IS+1,JS+1)} contain Valid Data values THEN

3.2.1 COMPUTE (Smooth Grid-1is,js)
ELSE

3.2.2 SET (Smooth Grid-1is,js) to flag value TEMPFLAG
END IF

END DO
END DO

4.0 DO FOR ALL rows (JS) of current grid field, from bottom-minus-one to top-plus-one
(i.e., in decreasing direction) , by one

4.1 DO FOR ALL columns (IS) of current grid field, from right-minus-one to left-
plus-one (i.e., in decreasing direction) , by one

4.2 IF half, or more, of the (four) points given by the indices: {(IS,JS),(IS-1,JS),
(IS,JS-1),(IS-1,JS-l)} contain Valid Data values THEN

4.2.1 COMPUTE (Smooth Grid-Ois,js)
ELSE

4.2.2 SET (Smooth Grid-2is,js) to flag value FINALFLAG
END IF

END DO
END DO

4.3 DO FOR ALL points around borders of current grid field

4.3.1 SET (Smooth Grid-2is,js) to flag value FINALFLAG

END DO

5.0 COMPUTE (Maximum (Biased) Smoothed Grid Value)
5.1 COMPUTE (Maximum (Unbiased) Smoothed Grid Value)

6.0 DO UNTIL (Maximum Number of Levels to be Contoured reached OR
Maximum (Unbiased) Smoothed Grid Value exceeded)

6.1 COMPUTE (Contour Table (Unbiased)n)

6.2 COMPUTE (Contour Table (Biased)n)
END DO

7.0 COMPUTE (Number of Contour Levels)

8.0 COMPUTE (Output Size)
8.1 ACQUIRE (Output Buffer)
8.2 IF (Successfully acquired) THEN

9.0 COMPUTE (Spare Size)
9.1 COMPUTE (Critical Level)

10.0 COMPUTE (Center Offset Position)
10.1 COMPUTE (Quarter-Kilometer Expansion Factor)

11.0 DO FOR ALL levels in Contour Table (Biased)

12.0 DO FOR ALL rows on smoothed grid
12.1 Set the Left Boundary at the first gridpoint encountered when

searching in from the left border, whose value is greater than or
equal to the current contour value

12.2 Set the Right Boundary at the first gridpoint encountered, when
searching in from the right border, whose value is greater than or
equal to the current contour value

12.3 IF no such points are encountered, flag the row as having 'None'
END DO

12.4 Set the Top Boundary at the first row encountered, when searching in
from the top border, which is not flagged as having no points with values
greater than or equal to the current contour value

12.5 Set the Bottom Boundary at the first row encountered, when searching
in from the bottom border, which is not-flagged as having no points with
values greater than or equal to the current contour value

12.6 IF no rows are encountered having at least one point with a value
greater than or equal to the current contour value, flag the entire grid
field as having 'None'

13.0 DO FOR ALL rows from Top Boundary to Bottom Boundary
13.1 DO FOR ALL columns from Left Boundary to Right Boundary plus

one
13.2 IF a transformation occurs between a pair of successive

gridpoints such that the left point is less than the current
contour value while the right point is greater than or equal to the
current contour value THEN

13.2.1 Set a Left Marker on a bit map corresponding to the interface
between the two points

13.3 ELSE IF a transformation occurs between a pair of successive
gridpoints such that the left point is greater than or equal to the
current contour value while the right point is less than the
current contour value THEN

13.3.1 Set a Right Marker on a bit map corresponding to the
interface between the two points

END IF

END DO

END DO

14.0 DO UNTIL no more Markers remain turned on for this contour level. OR
the output buffer becomes full above the Critical Level

14.1 SEARCH the entire gridded field for Markers, representing the
Starting Points of contours (searching first for Left Markers, then for
Right Markers)

14.2 IF marker found is a Right Marker THEN
14.2.1 Set initial Direction of Travel as South
14.2.2 Set Factori to +1
14.2.3 Set Factorj to 0

14.3 ELSE IF marker found is a Left Marker THEN
14.3.1 Set initial Direction of Travel as North
14.3.2 Set Factori to -1
14.3.3 Set Factorj to 0

END IF

15.0 Set Reference Gridpoint as point on smoothed grid to immediate
right of Marker, relative to contour's Direction of Travel

15.1 COMPUTE (Interpolation)
15.2 COMPUTE (Contour Coordinatesip,jp)
15.3 STORE Initial (Contour Coordinatesip, jp) in the product buffer, as the

Starting Points of a linked vector

16.0 DO UNTIL contour reaches point where Marker has been turned off
OR returns to initial point

16.1 IF Marker exists along interface where contour currently
located, turn Marker off

16.2 Examine the points on the smoothed grid to the Left, Forward-
Left. Forward-Right and Right (in that order) of the contour's
current location until the first interface between an adjacent pair
of points is found such that the left point of the pair is less than
the contour value while the right point is greater than or equal to
the contour value. WHEN FOUND

16.3 IF the current and what would be the next Reference Gridpoint
are not both exactly equal to the contour value while all points to
either side of them are less than the contour value THEN

16.3.1 Move (i.e. draw) the contour to the interface between the
appropriate pair of points

16.3.2 Reset Reference Gridpoint as the right point, among pair
along new interface

16.3.3 Reset Direction of Travel appropriately to having Reference
Gridpoint to right, when intersecting interface

16.3.4 IF Direction of Travel is now South THEN
16.3.4.1 Set Factori to +1
16.3.4.2 Set Factorj to 0

16.3.5 ELSE IF Direction of Travel is now West THEN
16.3.5.1 Set Factori to 0
16.3.5.2 Set Factorj to +1

16.3.6 ELSE IF Direction of Travel is now North THEN
16.3.6.1 Set Factori to -1
16.3.6.2 Set Factorj to 0

16.3.7 ELSE IF Direction of Travel is now East THEN
16.3.7.1 Set Factori to 0
16.3.7.2 Set Factorj to -1

END IF

16.3.8 COMPUTE (Interpolation)
16.3.9 COMPUTE (Contour Coordinatesip,jp)
16.3.10 STORE new (Contour Coordinatesip,jp) in the product

buffer, as the Ending Points of a linked vector

16.4 ELSE
16.4.1 Do Not move contour to new interface, which would result in

the drawing of a 'Line Contour'
16.4.2 Retain Reference Gridpoint as is
16.4.3 Rotate Direction of Travel by +90° (clockwise) (i.e..

North!!>East!!>South!!>Wes!!>North)
16.4.4 Do Not store (Contour Coordinatesip,jp) in product buffer

(since same as previous)
END IF

END DO (...until contour reaches point where marker turned off
or returns to initial point)

17.0 If number of vector moves for completed contour is greater than the
Filter Level, FILTLEV, THEN

17.1 Store header fields for contour in product buffer
17.2 Store Contour Length in product buffer
17.3 Reset End-of-Buffer Pointer to last position occupied by contour just

packed

ELSE

17.4 Remove contour from product buffer by restoring End-of-Buffer
Pointer to position occupied just prior to processing of present
contour

END IF
END DO (... until no more Markers on, or full above Critical Level)

18.0 IF End-of-Buffer Pointer now exceeds Critical Level, discontinue
processing and generate message indicating premature termination; all
contours not drawn

END DO (... for all levels in Contour Table)

END IF (... output buffer successfully acquired)
END IF (... scratch workspace successfully acquired)

END ALGORITHM (Contour)

4.2.3.2 Data Definitions

SM_GRID_O Input grid field after zeroeth smoothing pass, in biased, integer units.

IG Input gridpoint index in X direction (i.e.. column index).

JG Input gridpoint index in Y direction (i.e., row index).

NVALIDAT No. of points (among the four) with valid data values.

SM_GRID_1 Input grid field after first smoothing pass, in biased, integer units.

IS Gridpoint index in X direction on smoothed grid (i.e., column index).

JS Gridpoint index in Y direction on smoothed grid (i.e., row index).

SM_GRID_2 Input grid field after second smoothing pass, in biased, integer units.

TEMPFLAG Temporary value to which flagged gridpoints will be set daring the input grid
smoothing process. until final pass (=0, all products).

FINALFLAG Final value to which flagged gridpoints will be set after completion of input grid
smoothing process, just prior to contouring (=66: Comp. Refl; =0: Echo Tops; =0:
Comb. Shear).

ISmin Minimum gridpoint index in X direction on smoothed grid.

ISmax Maximum gridpoint index in X direction on smoothed grid.

JSmin Minimum gridpoint index in Y direction on smoothed grid.

Jsmax Maximum gridpoint index in Y direction on smoothed grid.

MAX_SM_VAL_BIAS Maximum value on final, smoothed grid. in biased. integer units
(particular to the field being contoured).

MAX_SM_VAL_UNBI Maximum value on final. smoothed grid, in meteorological units
commonly associated with the field being contoured.

CONTABLE Table of levels to be contoured. in meteorological units.

BICONTABLE Table of levels to be contoured. in biased, integer units.

NUM_LEVS Number of levels to be contoured.

Nmax Highest level-index determined during analysis of Contour Tables.

OUT_SIZ Total output buffer space needed per product. in (32-bit) integer fullwords (will
not exceed 11,000; or 44,000 bytes).

HDR_SIZ Size of header for non-contour portion of product. in (32-bit) integer fullwords.

CON_SIZ Output buffer space needed for contour portion of product. in (32-bit) integer
fullwords (product/version dependent; not to exceed MAX_BUFSIZ).

ALPHA_SIZ Output buffer space needed for alphanumeric portion of product. (32-bit) integer
fullwords (product dependent may be zero)

SPARE_SIZ Spare space needed within contour portion of output buffer to prevent overflow,
in (32-bit) integer fullwords.

VEC_SIZ Size of one contour (i.e., linked) vector. in integer half-words (=2)

NBORDS No. of borders on grid field (=4).

FWD_HWD Full word-half word ratio (=2).

CRITLEV Critically-full output buffer level. in (32-bit) integer fullwords.

OFFCENT Offset to grid center, in smoothed-grid coordinates.

CORREC Correction.Factor (=1.0).

NSIDES No. sides in each direction of grid domain (=2).

QKM_EXPANS Expansion factor for ratio of smoothed grid to pixel grid (of 1/4-km
resolution) on which contours analyzed.

SMOOTH_RES Resolution of final, smoothed grid. in km.

QRT_KLM Constant inversely proportional to pixel grid resolution (=4).

INTERP Linearly-interpolated value indicating fractional distance to present position of
contour line along interface between Reference (i.e. Right) and Left Gridpoints,
on smoothed grid.

GRIDREFi,j Value. in biased. integer units, of Reference Gridpoint; i.e. point on smoothed
grid to immediate right of contour. relative to its Direction of Travel.

GRIDLT Value. in biased, integer units, of point on smoothed grid to immediate left of
contour. relative to its Direction of Travel (and adjacent to the Reference
Gridpoint)

CONVAL Current contour value, in biased, integer units (=nth entry in Contour Table
(Biased))

C0N_ip Current contour i-location (i.e.. column index). in pixel coordinates of 1/4-km
resolution. where increasing i corresponds to the positive X axis.

CON_jp Current contour j-location (i.e.. row index), in pixel coordinates of 1/4-km
resolution, where increasing j corresponds to the negative Y axis.

FACTORi Multiplication factor for I-coordinate. indicating how interpolation should be
applied in this direction.

FACTORj Multiplication factor for j-coordinate. indicating how interpolation should be
applied in this direction.

4.2.3.3 Symbolic Formulae

COMPUTE (Smooth Grid-0im,jm):

SM GRID 0im,jm [j
JG%1

j&JG
j

IG%1

i&IG

INGRID(i,j)] / NVALIDAT

SM GRID 1IS,JS ' [j
JG%1

j&JG
j
IG%1

i&IG

INGRID(i,j)] / NVALIDAT

SM GRID 1IS,JS ' [j
JS%1

j&JS
j
IS%1

i&IS

SM GRID 0(i,j)] / NVALIDAT

where:
33 (Summation) Includes only those gridpoints with valid (i.e. non-flagged) data values;
im,jm = Index or the midpoint of the square represented by the four input gridpoints

{(IG,JG), (IG+1,JG), (IG,JG+1), (IG+l,JG+l)};
i = Incremental index in X direction;
j = Incremental index in Y direction.

COMPUTE (Smooth Grid-lIS,JS):

(If zeroeth smoothing pass
not performed)

or:

(If zeroeth smoothing pass
is performed)

where:
33 (Summation) Includes only those gridpoints with valid (i.e. non-flagged) data values;
i = Incremental index in X direction;
j = Incremental index in Y direction.

SM GRID 2IS,JS ' [j
JS&1

j&JS
j
IS&1

i&IS

SM GRID 1(i,j)] / NVALIDAT

MAX SM VAL BIAS'Max[[(SM GRID 2i,j),i'ISmin,ISmax], j'JSmin,JSmax]

MAX SM VAL UNBI ' (MAX INPUT VAL&BIAS 1) / SCALE&BIAS 2

CONTABLEn ' BASE % (n&1) (INTERVAL

BICONTABLEn ' SCALE ((CONTABLEn % BIAS 2) % BIAS 1

NUM LEVS ' Min[Nmax,MAXLEVS]

COMPUTE (Smooth Grid-2IS,JS):

where:
33 (Summation) Includes only those gridpoints with valid (i.e. non-flagged) data values;
i = Decremental index in X direction;
j = Decremental index in Y direction.

COMPUTE (Maximum (Biased) Smoothed Grid Value):

where:

i = Incremental index in X direction;
j = Incremental index in Y direction;
Max = A function which extracts the maximum value amongst a field of data.

COMPUTE (Maximum (Unbiased) Smoothed Grid Value):

COMPUTE(Contour Table (Unbiased)n):

where:
n = Table-level index.

COMPUTE (Contour Table (Biased)n):

where:
n = Table-level index.

COMPUTE (Number of Contour Levels):

OUT SIZ ' HDR SIZ % CON SIZ % ALPHA SIZ

SPARE SIZ ' NBORDS (VEC SIZ (ISMAX / FWD HWD

CRITLEV ' CON SIZ & SPARE SIZ

OFFCENT ' (ISmax % CORREC) / NSIDES

QKM EXPANS ' SMOOTH RES (QRT KLM

INTERP ' (GRIDREFi,j & CONVAL) / (GRIDREFi,j & GRIDLEFT)

CON ip ' Nint [[GRIDREFi,j & OFFCENT % INTERP(FACTORi] (QKM EXPANS]

CON jp'Nint[[GRIDREFi,j & OFFCENT%INTERP(FACTORj](QKM EXPANS](Neg

where:

Min = A function which extracts the minimum value amongst a field of data.

COMPUTE (Output Size):

COMPUTE (Spare Size):

COMPUTE (Critical Level):

COMPUTE (Center Offset Position)

COMPUTE (Quarter-Kilometer Expansion Factor):

COMPUTE (Interpolation):

COMPUTE (Contour Coordinates ip,jp):

where:
Nint = An operator which rounds a real result to the nearest integer;
Neg = A multiplication factor which negates a result.

4.2.4 Algorithm Outputs

Identification

CONTBUF The portion of the product output buffer filled with encoded, contour
data in linked-vector format.

WORDCNT The final count of contour half-words (i.e.. 16-bit) in contour portion of product
buffer.

Distribution

Both CONTBUF and WORDCNT are returned to the calling product task, for incorporation into its
complete product buffer.

4.2.5 Inferences

Limitations

If the Critically-Full level (CRITLEV) is exceeded during processing, the algorithm will not draw
any more higher level contours.

Choosing a high Filter Level (FILTLEV) will help reduce the size of the product but will result in
some small contours (i.e., those consisting of a small number of vector-moves) being omitted.

4.3 Polar To Grid Conversion A1gorithm

1.0 Procedure

1.1 Algorithm

Begin Algorithm (Polar to Grid Conversion)

> Variables <
GBS = Grid box size
SF = Scaling Factor
DR = Size of range bin
N = Elevation angle
2 = Azimuth
dx, dy = Scaled integer numbers
x, y = Scaled integer numbers
XH(1), YH(1) = Bin location in matrix
SF = 216

x = 1
y = 1

Integer*4 X,Y, DX, DY
Integer*2 YH(2), XH(2)
Real*4 Constant, dR, N, 2, SF, GBS

1.0 Do For All (Elevations)

Constant = dR * cos N * SF
GBS

1.1 Do For All (azimuths)

dx = integer [constant * sin 2]
dy = integer [constant * cos2]

1.1.1 Do For All (Bins)

y = y + dy
x = x + dx

Box (XH(1), YH(1)) =

End do (bins)
End do (azimuths)

End do (elevation)

End Algorithm (Polar to Grid Conversion)

For layer composite products (23 and 24), echo tops (8), VIL (17), as well as Grid
Group alert category (a) "products", assume that no polar cell maps into more than
one Cartesian grid space; hence, no reverse mapping " or fill" processing is required.

4.4 Run Length Encoding

1.0 Procedure

An algorithm for run-length encoding a series S of N number, and generating a series V of K run-
length values and a series L of K lengths

1.1 Algorithm

Begin Algorithm (Run Length Encoding)

1.0 K = 1
V(K) = S(1)
L(K) = 1

1.1 DO for I = 2 to NO
1.1.1 IF (S(I) = S(I - 1)), THEN

L(K) = L(K) + 1
IF (L(K) = 16), THEN

L(K) = L(K) - 1
K=K+1
V(K) = S(I)
L(K) = 1

END IF
ELSE

K=K+1

Note 2 : Table is an Integer*1 array.

Note 3 : Bit 0 is MSB.

V(K) = S(I)
L(K) = 1

END IF
END DO

1.2 For J = 1 to K DO:
Bits (0:3) of Table (J) = L(K) (See Note 2) (See Note 3)
Bits (4:7) of Table (J) = V(K)

END DO

END Algorithm (Run Length Encoding)

4.5 Cross-Section

1.0 Procedure

1.1 Algorithm

Begin Algorithm (Cross-Section)

1.0 DO FOR ALL ELEVATIONS

1.1 DO FOR ALL RADIALS

1.1.1 DO FOR ALL REQUESTED GRIDS

1. 1. 1. 1 DETERMINE WHETHER RADIAL INTERSECTS GRID

1. 1. 1. 2 IF YES THEN
DETERMINE BREADTH OF PLANE INTERCEPTED BY
BEAM (ASSUMED 1° WIDE)
DETERMINE SECTION OF RADIAL CORRESPONDING TO
END POINTS OF INTERCEPTED SECTION OF PLANE
MAP APPROPRIATE BASE DATA FROM ALL BINS WITHIN
INTERCEPTED SECTION OF RADIAL TO CORRESPONDING
BOXES X-Z GRID

END IF
END DO

END DO
END DO

2.0 DO FOR ALL REQUESTED GRIDS

2.1 VERTICALLY INTERPOLATE BETWEEN LOWEST AND HIGHEST POINTS IN
EACH COLUMN THAT HAD DATA TO THEM (TO FILL ANY HOLES)

2.2 RETAIN ANY POINTS OUTSIDE THIS VERTICAL RANGE FLAGGED TO

INDICATE "NO DATA"

END DO

End Algorithm (Cross-Section)

4.6 Polar/LFM Conversion

4.6.1 Description

An algorithm is provided to identify the subset LFM grid box (I.J coordinates) corresponding to each
display plane polar radar coordinate. Grid boxes for the 1/4, 1/16. and 1/40 LFM grids centered on
the radar site are identified for each polar radar coordinate. The methodology used is to first
translate each polar radar coordinate to a corresponding latitude, longitude in a manner consistent
with the projection of background map data to the NEXRAD display plane. A polar stereographic
projection of latitude, longitude to the LFM grid plane (tangent to the earth at the North Pole) is
then performed to identify the grid box. The equations given apply for a northern hemispherical
grid. However, these equations are useable to about 30 degrees latitude into the southern
hemisphere. The grid is oriented such that the J-axis is parallel with the specified prime meridian
(105 degrees W) and has a 1/4 LFM box size of 47.625 km true at 60 degrees latitude. For
computational convenience. the I-axis for the grid is defined as positive to the right and the J-axis is
positive down with the I, J coordinates of the North Pole set to 433.433. An earth's radius of
6371.221 km is used for the polar stereographic projection of latitude, longitude to the LFM grid
plane.

It should be noted that the algorithm provided assumes a polar radar coordinate resolution of 1-km
range by 1-degree azimuth with the azimuths centered on 0.5 degree. 1.5 degrees. etc, and range
extending to 460 km. A range resolution of 2 km may be used with coarse resolution products
where desirable to save throughput or simplify program design. Centering of the azimuths is
arbitrary since the radar has no fixed azimuth position for any given radar beam. Grid boxes need
not be defined beyond a range of 230 km for the 1/4 and 1/40 grids since the associated products are
limited to this range.

4.6.2 Definition of Terms

LS, 8S = site latitude, longitude (deg)

L, 8 = latitude, longitude of a given polar radar coordinate

R, B = range, bearing of a given polar radar coordinate

GI, GJ = global grid coordinates of a given polar radar coordinate in units of 1/4 LFM
boxes (I positive to right, J positive down)

I(M), J(M) = local grid box number of a given polar radar coordinate for 1/4, 1/16, 1/40
LFM grids (M = 1,2,3, respectively). Upper left corner box of grid is
numbered I,J = 1,1

IP, JP = global grid coordinates of North Pole in units of 1/4 LFM grid boxes (IP, JP =
433, 433)

GIS, GJS = global grid coordinates of radar site in units of 1/4 LFM boxes

GIS ' KC

cos LS

1%sin LS

sin(8S%105°)%IP

GJS ' KC

cos LS

1%sin LS

cos(8S%105°)%JP

IS(M), JS(M) = global grid box number for box 0.0 of 1/4, 1/16, 1/40 local LFM grids (M =
1,2,3, respectively)

S = angular great circle distance between polar radar coordinate and radar site

KC = grid scale factor = 2 * R (1 + sin 60°) = 249.6348607
 47.625

RS = earth's radius (= 6,371.221 km)

4.6.3 Procedure

1.0 Compute sin LS, cos LS, cos (8S + 105°), sin (8S + 105°)

2.0 Compute Reference Grid Box Coordinates

2.1 Compute Grid Box Number for box, 0.0 of local grids

IS(1) = INT(GIS) - 7

JS(1) = INT(GjS) - 7

IS(2) = INT(GIS) - 49

JS(2) = INT(GjS) - 49

IS(3) = INT(GIS) - 66

JS(3) = INT(GjS) - 66

where IS, JS(1,2,3) are box numbers for 1/4, 1/16 and 1/40 LFM grids

3.0 Initialize Bearing

B = -0.5 degree

4.0 Do or each bearing (36O times)

B = B + 1 degree

sinS '
R

6.380
(1 &

135R

6.3802
)

cos)8 ' (1 & sin2)8)1/2

sin)8 ' sin S sin B/cos L

cos L ' (1 & sin2 L)1/2

sin L ' sin LS cos S % cos LS sin S cos B

cosS ' (1 & sin2 L)1/2

RL ' KC (
cos L

1 % sin L

R = -1/2 km

compute sin B, cos B

4.1 Do for each range (460 times)

R = R + 1km

where:)8 = 8 - 8S

GI = RL sin)8 cos (8S + 105°) + RL cos)8 sin (8S + 105°) + IP

GJ = RL cos)8 cos (8S + 105°) - RL sin)8 sin (8S + 105°) + JP

4.1.1 Do for M = 1,2,3

I (M) = INT[GI * KA(M)] - IS(M)

J (M) = INT[GJ * KA(M)] -JS(M)

 where KA - 1,4,10 or M = 1,2,3 respectively

4.2 End of range computation

5.0 End of bearing computation

Notes:

1. For 1/4 LFM, box MM has I,J = 7,7
For 1/16 LFM box MMA has I,J = 49,49

2. I,J values outside of the following ranges should be set to Not Applicable:
For 1/4 LFM, I,J = 1,1 to 13,13
For 1/16LFM, I,J = 1,1 to 100,100
For 1/40 LFM, I,J = 1,1 to 131,131

3. To minimize storage requirements, local grid box numbers may be encoded into
single numbers. To encode by row first, use I + NG(J-l). To encode by column
first, use J + NG(I - 1)
NG = 25, 100, 131 for 1/4, 1/16, 1/40 LFM grids respectively.

4.6.4 Additional Considerations

At longer ranges and at lower latitudes, the grid box size becomes smaller relative to the polar
radar coordinate resolution. In such circumstances, it is possible that certain grid boxes will not be
mapped to any polar radar coordinate at the completion of the above algorithm. For these cases, the
closest coordinate will be used. Thus, for example, if box i,j on the local grid has no cell mapped, the
range, azimuth of the closest coordinate is defined as:

R = INT(RCij) + 0.5

B = INT(RCij) + 0.5
where:

RCij = Range to center of box i,j (km)
RCij = Azimuth to center of box i,j in degrees (0° to 359.999°)

A method for computing RCij, 2Cij is given in Section 4.6.4.1.

4.6.4.1 Computation for Coordinates of Grid Box Center

Coordinates of box centers (relative to pole) in units of 1/4 LFM boxes can be computed as:

CII = AI(M) + B(M) * i

CJJ = AJ(M) + B(M) * j

where M = 1,2,3 for 1/4, 1/16, 1/40 grids

LIJ ' 90° & 2 tan &1[
(CI 2

i % CJ 2
j)1/2

KC

]

8IJ ' &105° % tan
&1[

CIi

CJj

]

2Cij ' tan&1[
cosLij cosLS sin(8ij&8S)

sinLij & sinLS cos S
]

i,j = 1,1 to 13,13 for 1/4 grid
i,j = 1,1 to 100,100 for 1/16 grid
i,j = 1,1 to 131,131 for 1/40 grid

AI, AJ, B are constants defined as:

AI(1) = IS(1) - IP + 0.5

AJ(1) = JS(1) - JP + 0.5

AI(2) = (IS(2) - 4IP + 0.5) / 4

AJ(2) = (JS(2) - 4JP + 0.5) / 4

AI(3) = (IS(3) - 10IP + 0.5) / 10

AJ(3) = (JS(3) - 10JP + 0.5) / 10

B(1), (2), (3) = 1, 1/4, 1/10, respectively

Latitude, longitude of box i,j center is then:

(use two-variable arctangent function)

Range, Az of box i,j center is then computed as follows:

sin S = (A2 + B2)½

cos S = (1 - sin2S)½

where:.

A = cos Lij sin(8ij - 8S)

B = cos LS sin Lij - sin LS cos Lij cos (8ij - 8S)

Rcij = (135 sin S + 6.380) sin S

if sin S $ 9.81 x 10-6,

(use two-variable arctangent
function)

If sin S # 9.81 x 10-6,

2Cij = 0.0

