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OVERVIEW

Multirate time integration for atmospheric dynamics

Generalised split-explicit Runge-Kutta methods

Split-explicit peer methods

Order and Stability

Relation to exponential integrators

Application to nonlinear atmospheric dynamics
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SPLITTING METHODS

Motivation:
Atmospheric models contain slow (advection) and fast (gravity and
sound wave) modes.
Metheorologically important: Medium and low frequencies
CFL-number of fast waves resticts time step
Pure advection allows larger stepsizes

CFLADV ECTION/CFLSOUND ≤ 1/10

Apply multirate strategy
slow processes are integrated by large time steps
fast processes are integrated by small time steps where the
advective tendencies are fixed
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CLASSICAL RUNGE-KUTTA METHODS

Runge-Kutta method for integration of y′ = f(y) uses internal stages

Yni =yn + h
∑

j

aijf(Ynj)

Stage is interpreted as the exact solution of z′ = c :=
∑

j aijf(Ynj)

Zni(0) =yn

Z ′

ni(τ) =
∑

j

aijf(Ynj)

Yni =Zni(h).
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RUNGE-KUTTA PARTITIONED METHODS

Extend to a partitioned equation y′ = f(y) + g(y).

In each stage compute Zni(τ) as solution of Z ′(τ) = F + g(Z(τ)),
where F = const are the fixed slow tendencies

Zni(0) =yn

Z ′

ni(τ) =
∑

j

aijf(Ynj)+cig(Zni(τ))

Yni =Zni(h).

Split-explicit RK3-method (widely used in numerical weather prediction):

Coefficients A =











0 0 0 0

1/3 0 0 0

0 1/2 0 0

0 0 1 0











, nodes c = (0, 1/3, 1/2, 1)T
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RUNGE-KUTTA PARTITIONED METHODS

We generalise the exact integration procedure in two directions:
arbitrary starting points based on preceeding stages

Zni(0) =yn+
∑

j

αij(Ynj − yn)

increments in the constant term F based on preceeding stages

Z ′

ni(τ) =
1

h

∑

j

γij(Ynj − yn)+
∑

j

βijf(Ynj) + dig(Zni(τ))

In order to balance the processes f and g in each RHS we demand

di =
∑

j

βij .
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RUNGE-KUTTA PARTITIONED METHODS

The complete method is given by

Zni(0) =yn +
∑

j

αij(Ynj − yn)

Z ′

ni(τ) =
1

h

∑

j

γij(Ynj − yn) +
∑

j

βijf(Ynj) + dig(Zni(τ))

Yni =Zni(h)

yn+1 =Yn,s+1.

g = 0 ⇒ underlying RK method

Y =1l ⊗ yn + ((α + Γ) ⊗ I)(Y − 1l ⊗ yn) + h(β ⊗ I)f(Y )

Y =1l ⊗ yn + h((I − α − Γ)−1β ⊗ I)f(Y )

⇒ A =(I − α − Γ)−1β =: Rβ
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DERIVATION OF ORDER CONDITIONS

Expand numerical solution in a Taylor series.
Note: Zni is a function of τ and h. Define

G(Yni)
(k) := ∂k

∂hk

∣

∣

∣

h=0
G(Yni), G(Zni)

(k,l) := ∂k+l

∂τk∂hk

∣

∣

∣

τ=h=0
G(Zni)

Recursion for derivatives of Yni:

Yni =Zni(h, h) ⇒ Y
(k)
ni =

k
∑

l=0

(

k

l

)

Z
(l,k−l)
ni .

3 different recursions for derivatives of Zni:

Z
(0,l)
ni =

∑

j

αijY
(l)
nj

Z
(1,l)
ni =

1

l + 1

∑

j

γijY
(l+1)
nj +

∑

j

βijf(Ynj)
(l) + dig(Zni)

(0,l)

⇒ Z
(k,l)
ni =dig(Zni)

(k−1,l), k ≥ 2.
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ORDER CONDITIONS

The recursion leads to following order conditions for 3rd order
four classical order conditions

bT 1l =1, bT c = 1/2, bT c2 = 1/3, bT Ac = 1/6

and five additional order conditions

b̃(c + c̃) =1

b̃(I + α)Ac =1/3

3b̃(α + Γ/2)RD(c + c̃) + b̃T D(c + 2c̃) =1

bT RD(c + c̃) =1/3

b̃T (c2 + c̃2 + c · c̃) =1

where we use c̃ := αc and b̃ = eT
s+1RD.
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CONSTRUCTION OF METHODS

we search for a 3 stage 3rd order method

12 free parameters for 9 order conditions

No 3rd order method for α = Γ = 0 (classic splitting like RK3)

Parametrization: Eliminate 8 order conditions
4 free parameters and 1 complex nonlinear condition remain

Exhaustive search of parameter space for methods with good stability
properties

We found several methods. Here: WKG

Compare with conventional split–explicit methods (RK3) and exponential
integrators (CF3)
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PEER METHODS

Peer method for integration of y′ = f(y) can be written compactly

Yn = BYn−1 + hAFn−1 + hRFn

with notations

Yn := (Yni)
s
i=1 ∈ R

s×n with Yni ≈ y(tni) = y(tn + cih),

Fn :=
(

f(tni, Yni)
)s

i=1
∈ R

s×n

and A, B, R ∈ R
s×s where R is a strictly lower triangular matrix

Each stage is a linear multistep method

Cyclic recurrence equals the stage number

Each stage has maximal order, order theory from linear multistep
methods

Starting procedure necessary (like BDF)

Various generalizations (parallel in time, linear implicit)
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PEER PARTITIONED METHODS

The i-th stage of a split-explicit peer method is given by:

Z(0) =
s
∑

j=1

bijYn−1,j +
i−1
∑

j=1

sijYnj ,

Z ′(τ) =
1

αi

( s
∑

j=1

aijFn−1,j +

i−1
∑

j=1

rijFnj

)

+ g(Z(τ))

Yni = Z(αih).

New order conditions are derived in similar way

More free parameters than for Runge-Kutta methods

Free parameters are determined with respect to good stability properties
for linear acoustics
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PEER PARTITIONED METHODS

c =

�

−0.0899531627878552 0.4676428830697650 1

�
T

α =

�

0.0663272206869390 0.5550418090653672 0.8254622965775625

�
T

B =

0BB�−0.0967059983845656 0.4915598645202344 0.6051461338643311

−0.0470929826281593 0.2169946581702936 0.5720815963722115

−0.0891437312845480 0.1573830315884013 0.1973233392586685

1CCA

S =

0BB� 0 0 0

0.2580167280856541 0 0

0.3269306113397434 0.4075067490977347 0

1CCA

A =

0BB� 0.0721007322008575 −0.1322804288331288 0.1265069173192104

0.0478238719665258 −0.4831372398722279 −0.1163332106046261

0.0325906971440313 0.0702440095890842 0.1286761505892647

1CCA

R =

0BB� 0 0 0

1.1066883875756954 0 0

−0.5020271673748957 1.0959786066300778 0

1CCA
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PEER PARTITIONED METHODS

It has the following properties where the indices of the Courant numbers
denote the spatial order (the corresponding values for RK3 arranged behind
for comparison):

C3 = 1.72 (1.73) C5 = 1.47 (1.44)

The moduli of the eigenvalues of B + S must not exceed 1 for zero stability,
they are:

λ1 = 0.296 λ2 = 0.386 λ3 = 1
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EXPONENTIAL INTEGRATION VIA FRAMES

Frame: Vectorfield F where we can solve y′(t) = F (y)
with solution operator y(t) = exp(tF )y(0)

M = R
n, F |y = v ⇒ exp(tF )y = y + tv

M = R
n×n, F |Y = AY ⇒ exp(tF )Y = Exp(tA) · Y

System of frames Fi: we can solve y′(t) =
∑

j αjFj(y)

n + n2 frames in R
n: y′ = c + Ay where the frames are:

Fi(y) = ei and Fij(y) = eiyj for i, j = 1, . . . , n.

exact solution

y(t) = Exp(hA)y(0) + hφ(hA)c, where φ(z) := (ez − 1)/z

Solve y′(t) = f(y) := g(y) + A(y)y

Fixed Frame f [p]: f [p](y) = g(p) + A(p)y ⇒ exact integration!

Note: y occurs twice on the RHS!
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GENERALISED RK METHODS

Internal stages of RK methods Yni = yn + h
∑i−1

j=1 aijf(Ynj)

This is the solution operator of

Yni = SOLUTION(t = h, Y ′ =
∑

j

aijf(Ynj), Y (0) = yn)

Apply solution operator exp to frames

Yni =exp(h
∑

j

aijf [Ynj ])yn

BUT: these methods have maximum order TWO (Munthe-Kaaas, 95/98)

Higher order via commutators of vectorfields
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COMMUTATOR FREE HIGH ORDER METHODS

With multiple exponentials in the stages ⇒ arbitrary order

Yni = exp(h
∑

j

a
(2)
ij f [Ynj ]) exp(h

∑

j

a
(1)
ij f [Ynj ])yn

Exponentials are expansive ⇒ reuse them

a
(1)
ij = a

(1)
k(i)j ⇒ Yni = exp(h

∑

j

a
(2)
ij f [Ynj ])Yn,k(i)

Applied to

y′ = g(y) + A(y)y ⇒ f [p](y) = g(p) + A(p)y

y′ = g1(y) + g2(y) ⇒ f [p](y) = g1(p) + g2(y)

y′ = g(y, y) ⇒ f [p](y) = g(p, y)
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THE METHOD CF3

Butcher tableau of CF3 (Celledoni et.al. 03, Owren 06),
method has order 3

0

1/3 1/3

2/3 0 2/3

1 1/3

−1/12 0 3/4

In our notation we have

β =











0 0 0 0

1/3 0 0 0

0 2/3 0 0

−1/12 0 3/4 0











, α =











0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0











, Γ = 0.
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STABILITY: LINEAR ACOUSTICS

Given

ut + Uux = − csπx

πt + Uπx = − csux

where U is the mean advective velocity, cs is the constant sound speed,
and π is a normed perturbation Exner pressure.

The spatial discretisation based on staggered grids (C-grid):
advection →
upwind-differences.

sound waves →
symmetric differences.

This leads to partitioned ODE:

u′

i(t) ={−
U

6∆x
[2ui+1 + 3ui − 6ui−1 + ui−2]} + {−

cs

∆x
[πi − πi−1]}

π′

i(t) ={−
U

6∆x
[2πi+1 + 3πi − 6πi−1 + πi−2]} + {−

cs

∆x
[ui+1 − ui]}
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STABILITY ANALYSIS

Stability: fixed Courant numbers CA = U∆t/∆x, CS = cs∆t/∆x

variable wave number k (wave eikx)

(

u

π

)n+1

= S(CA, CS , k)

(

u

π

)n

The stability requires that the absolute values of eigenvalues of
amplification matrix S(CA, Cs) must not exceed 1.
We define:

R(CA, CS) := max
k

|(S(CA, CS , k))|.

Moreover, we discuss the case when a finite number of small time steps
is applied, i.e. in each stage i of the methods we integrate the underlying
equation Z ′

ni = c + g(Zni) not exactly, but numerically with nsi small
steps.
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STABILITY REGIONS

RK3, exact integration.
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STABILITY REGIONS

Peer, exact integration, short interval.
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STABILITY REGIONS

Exact integration versus forward-backward method

WKG exact integration.
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STABILITY REGIONS

Exact integration versus linear implicit midpoint rule

Small time step equals large time step

RK3, midpoint rule.
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EULER EQUATIONS (2D)

Conservation form with entropy as thermodynamic quantity

∂U

∂t
+

∂F (U)

∂x
+

∂G(U)

∂z
= Q

U =











ρ

ρu

ρw

ρθ











, F (U) =











ρu

ρuu + p

ρwu

ρuθ











, G(U) =











ρw

ρuw

ρww + p

ρwθ











.

Q denotes the gravity source terms.

diagnostic equation: Pressure p = p(ρθ)

p = p0

(

Rρθ

p0

)γ
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Spatial Discretization: Finite Volumes

Staggered grid (Arakawa C-grid)

ρ,ρθ −> φ

ρu

vρ

From Cell to Face: upwind

For φ ∈ {1, θ, u, w} we interpolate (upwind, 3rd order) from center to face

∂

∂t
(ρφ)ik = −

1

∆x
[(ρu)i+1/2,kφi+1/2,k − (ρu)i−1/2,kφi−1/2,k]

−
1

∆z
[(ρw)i,k+1/2φi,k+1/2 − (ρw)i,k−1/2φi,k−1/2]

ρu-update: shift to left/right cell center, then average update
Pressure gradient: symmetric difference
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NONLINEAR TESTS

Euler equations, rising bubble with advection
Domain 20km × 10km, Grid dx = dz = 125 m;
Final time = 1000s = 17 minutes
Initial state: u = 20m/s, v = 0, hydrostatic balance, θ = 300K.

Thermal bubble with ∆θ = +2K, radius 2km

Boundary conditions: periodic/no-flux
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Maximum step sizes

Method RK3 CF3 WKG Peer

Macro Time Step in s 0.9 0.5 1.6 5.0

Small time interval 1.83 1.67 1.62 1.44
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SUMMARY

Improved RUNGE-KUTTA like schemes are presented which have larger
stability regions than RK3 in the absence of divergence damping

Especially Peer methods are very promising

Proposed idea can be applied in recursive way for including even faster
processes like microphysics

Order conditions are derived for third order methods in time

Methods are included in the atmospheric code ASAM

– p. 28/28


	OVERVIEW
	SPLITTING METHODS
	CLASSICAL RUNGE-KUTTA METHODS
	RUNGE-KUTTA PARTITIONED METHODS
	RUNGE-KUTTA PARTITIONED METHODS
	RUNGE-KUTTA PARTITIONED METHODS
	DERIVATION OF ORDER CONDITIONS
	ORDER CONDITIONS
	CONSTRUCTION OF METHODS
	PEER METHODS
	PEER PARTITIONED METHODS
	PEER PARTITIONED METHODS
	PEER PARTITIONED METHODS
	EXPONENTIAL INTEGRATION VIA FRAMES
	GENERALISED RK METHODS
	COMMUTATOR FREE HIGH ORDER METHODS
	THE METHOD CF3
	STABILITY: LINEAR ACOUSTICS
	STABILITY ANALYSIS
	STABILITY REGIONS
	STABILITY REGIONS
	STABILITY REGIONS
	STABILITY REGIONS
	EULER EQUATIONS (2D)
	Spatial Discretization: Finite Volumes
	NONLINEAR TESTS
	SUMMARY

