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Examples

Banner clouds occur when sufficiently moist air flows across steep
(often pyramidal shaped) mountain peaks or quasi 2D ridges.

27.08.2005 Duration: 19:07 — 20:20 UTC

=

Matterhorn (Swiss Alps)

o . »> cloud is confined to the immediate lee

> windward side remains cloud-free
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Postulated mechanism of formation (TI)

1. Mixing of two air masses with distinct properties (temperature, humidity)
=» Banner cloud = Mixing fog ? (Humphreys, 1964)

2. Adiabatic expansion in a region of accelerated flow at the mountain’s tip, based
on the Bernoulli-effect (Beer, 1974)

Simple scaling analysis

AT ~02K <—— Ap~2hPa <0 Ay 14ms™?

=» Pressure reduction due to Bernoulli can not be more than a few hPa
=» local cooling can not be more than a few tenths of a degree

=> It is unlikely that the pressure decrease itself causes leeside condensation

Same cooling results form dry adiabatic lifting of only Az = 20m !
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Postulated mechanism of formation (IT)

3. Favoured mechanism: Banner clouds as visible result of forced upwelling in
the upward branch of a lee vortex (Glickman, 2000)

cold dry air Objectives:

_ > Verification of postulated

mechanism 3 using LES

strong wind " horizontal » Clarify necessity of

*convergence

inhomogeneous conditions
(temperature, humidity)

» Relative importance of
thermodynamics for
reinforcement and maintenance

Mechanism 3

Schween et al (2007)
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Theapplied LES maodel

» Developed during banner cloud project (Reinert et al, 2007); based on a former
mesoscale (RANS) model

U Moist physics:
0 Two-moment warm

: microphysical bulk scheme
Turbulent inflow: (Chaumerliac, 1987)

Modified perturbation
>l | recycling method

SGS-model
( ' —Lilly-Smagorinsky
—TKE-closure

Q (Deardorff, 1980)

Arbitrarily steep topography
Method of viscous topography
(Mason and Sykes, 1978)
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Qualitative example of generated turbulence

» Coherent structures visualized by
Q-criterion (Jeong and Hussain, 1995)

> Isosurface coloured with vertical velocity

-
o
(=]
o
7

heightin m

W in m/s

» Isosurface of relative humidity
(rh=65%)

> Isosurface coloured with vertical velocity
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MeEthod 0T ViSCOUS tOPOSTAPY- (Mason and' Sylkes) 1978)

» Treatment of air and topography as two fluids with vastly different viscosities
» Modification of viscous stresses within grid cells intersected by orography
> Application of a modified, interpolated viscosity / exchange coefficient

=» Accounts for exact position of orography; refinement of stepwise approx.

Atmosphere

Interpolation ...~

layer

Ground

Model discretization:

choose v, such that flux calculated by the
model equals flux assuming u=0 ms™"

at point R

Assumption:
constant fluxes within interpolation layer.

’U,Q—UR ’LLQ—UP
me A_e — PVint— A

— Vint = K -

m A—e
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Model setup

» Numerical simulation of flow around idealized pyramidal-shaped obstacle
» Simulations were conducted on wind tunnel scale and atmospheric scale

Here: Simulations on atmospheric scale will be shown.

¢ periodic outflow

Damping layer

H=1000 m

& periodic L= 93? m
a=65

AX =25m
Ay = 25m

Re= 5.6 x 108

Uy=9 ms-

- Turbulent inflow with logarithmic velocity profile
- 260(x) x 126(y) x 64(z) grid cells
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Thermodynamic sittiation

|dealised profiles motivated by measurements at Mount Zugspitze

Virt. pot. temp. and spec. humidity Stability analysis
<q,>ing kg™

LI L

pyramid height |

.............. N i ieiieme i eaaaa

IIJIJII.'I.IIIIIJIJJI.JI.

289 0.004 0.006 0.008 0.0710 0.012
<6,>inK (dT/dz) inKm’

> Lifting cond. level below pyramid tip for large parts of boundary layer depth
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Wind vectors of time mean tow

5 "
Stagnation
point :

But !
> Significant upwelling in ™ Does mechanism also work
the lee for horizontally homogeneous
> Highly asymmetric flow Results support conditions ?
field regarding windward | postulated
versus leeward side mechanism 3 l
» Upwelling region has Lagrangian information
!{ﬁ;gleereVerticm extent in about vertical displacement

on lws and wws necessary
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Inttialization of passive tracer

DO

o -

—> information about mean vertical displacement Az of air masses
on windward versus leeward side.

0

> Advection of passive tracer ®, satisfying

D (Xipjer» ¥, 2,1) = Z
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Inttialization of passive tracer

DO

o -

—> information about mean vertical displacement Az of air masses
on windward versus leeward side.

0

> Advection of passive tracer ®, satisfying

Az: mean vertical displacement

'
AZ(X,Y,2)=2—D(X,V,2)
(D(Xinlet’ Y Z’t) =17 l

Deutsche
Forschungsgemeinschaft

DFG




averaged vertical'displacement AZ ot passive  tracet

» Highly asymmetric

»> largest positive Az in the
immediate lee

U

No necessity for additional
leeward moisture sources or
distinct air masses

|

1
-l

z/H=0.88

Magnitude of asymmetry is
a measure for the
probability of banner cloud
formation

Overall: strong structural
similarity with real banner
cloud.
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glmulatlon WltH moisture pHYSICS SWltCHeH on

Objectives: — Simulation of realistically shaped banner cloud
— Substantiate results/conclusions drawn from the former (dry) runs

Setup: - no additional (leeward) moisture sources
— no distinct air masses
— no radiation effects
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Simulation with moisture physics switched on

Objectives: — Simulation of realistically shaped banner cloud
— Substantiate results/conclusions drawn from the former (dry) runs
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Simulation with moisture physics switched on

Objectives: — Simulation of realistically shaped banner cloud
— Substantiate results/conclusions drawn from the former (dry) runs

Setup: - no additional (leeward) moisture sources
— no distinct air masses
— no radiation effects

Mean specific cloud water content in x-z-plane
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Impact of moisture physics

One could think of the following impacts:

»> |Impact on mean flow:
» Potential to reinforce/sustain the upward branch of the leeward vortex
— Help to sustain banner clouds during episodes with weak dynamical forcing

»> |Impact on/leeward turbulence:

» Banner clouds give rise to a destabilization of the lee which may increase
leeward turbulence

Results for one investigated thermodynamic situation:

»>Moisture physics do not significantly impact the upward branch of the leeward vortex.

»>Moisture physics give rise to a moderate increase of leeward turbulence.
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Stnmary and concltsions

The numerical simulations revealed

»> Banner cloud formation downwind of pyramidal shaped mountains can be explained
through:

* Forced upwelling in the upward branch of a leeward vortex

> Flow field is highly asymmetric regarding the Lagrangian vertical displacement
= Banner clouds can form under horizontally homogeneous conditions

— No need for additional features like: * leeward moisture sources
* distinct air masses

* radiation effects

»> Theories based on mixing fog or Bernoulli-Effect are not necessary in order to explain
banner cloud formation.

»> Moisture physics probably of secondary importance for banner cloud dynamics
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Thank you for your attention




Reterences

> Beer, T. (1974): Atmospheric Waves. Adam Hilger Press

» Deardorff, J. W. (1980): Stratocumulus-capped mixed layers derived from a three-dimensional
model. Boundary Layer Meteorology, 18, 495-527

> N. Chaumerliac et al. (1987): Sulfur scavenging in a mesoscale model with quasi-spectral
microphysics: Two-dimensional results for continental and maritime clouds. J. Geophys. Res. 92,
3114-3126.

»> Glickman, T. S., ed. (2000): Glossary of Meteorology, American Meteorology Society, Allen Press,
second. Edn.

> Humphreys, J. W. (1964 ): Physics of the air. Fourth Ed.; Dover Publ.
»> Jeong, J. and F. Hussain (1995): On the identification of a vortex. J. Fluid Mech. 285, 69-94

> Mason, P. J. and R. |. Sykes (1978): A simple cartesian model of boundary layer flow over
topography. J. Comput. Phys. 28, 198-210

> Reinert, D. et al. (2007): A new LES model for simulating air flow and warm clouds above highly
complex terrain. Part I: The dry model, Boundary Layer Meteorology, 125, 109-132

»> Schween, J. et al. (2007): Definition of ‘banner clouds’ based on time lapse movies. Atmos.
Chem. Phys 7, 2047-2055

Deutsche
Forschungsgemeinschaft

DFG

GUTERRERG..




Meteorological conditionstior banncr cloud tormation

»> Whether a banner cloud forms or not is determined by both the thermodynamical
situation (T(z), q,(z) upstream) and the dynamical situation (flow field induced by
mountain)

» Thermodynamical situation (T(z), g,(z)) and dynamical situation must match

Following schematic:

» Characterization of thermodynamical situation: Vertical profile of LCL derived from
inflow dataset

»> Characterization of dynamical situation: Vertical profiles of tracer displacement
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Meteorological conditions 1or banner cloud tormation

max. vertical position of air parcel z,,_, in m No banner cloud
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