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Some reference simulations from 
laboratory to planetary scale

By Nils Wedi with many thanks to Piotr Smolarkiewicz!
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Outline

Examples with time-dependent lower and upper boundaries

Energy budget for wave-driven flows

Time-dependent lateral meridional boundaries

Local- and global-scale simulations on the reduced-radius 
sphere
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Time-dependent curvilinear boundaries

Exploit a metric structure determined by data …
Prusa, Smolarkiewicz and Garcia (1996); Prusa and Smolarkiewicz (2003);
Wedi and Smolarkiewicz (2004)

compute coordinate transformation related matrices
call topolog(x,y)          # define zs, zh

c     call shallow(it,rho,x,y)   # alternative zh
call metryc(x,y,z)         # define coordinates

compute base state, environmental, and absorber profiles
call tinit(z,x,y,tau,lipps,initi)

create boundary values for velocity
call velbc(ue,ve,rho)
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Metric coefficients

g110=1./((1-icylind)*gmm(i,j,k)*cosa(i,j)+icylind*1.)
g220=1./gmm(i,j,k)
g11=strxx(i,j)*g110
g12=stryx(i,j)*g110
g13=(s13(i,j)*gmul(k)-h13(i,j))*gmus(k)*g110
g21=strxy(i,j)*g220
g22=stryy(i,j)*g220
g23=(s23(i,j)*gmul(k)-h23(i,j))*gmus(k)*g220
g33=gi(i,j)*gmus(k)
ox(i,j,k,0)=g11*u(i,j,k,0)+g21*v(i,j,k,0)
oy(i,j,k,0)=g12*u(i,j,k,0)+g22*v(i,j,k,0)
oz(i,j,k,0)=g13*u(i,j,k,0)+g23*v(i,j,k,0)+g33*w(i,j,k,0)



ECMWF1st EULAG workshop 2008    Slide 5

Generalized coordinate equations in 
potential temperature

! Anelastic in theta (lipps=1,2,3)
th0(i,j,k)

! Boussinesq (lipps=0)
!    th0(i,j,k) = th00

Gmod =dth*g/th0(i,j,k)*astri
Gmodt=dth*g/th0(i,j,k)*astrti
. . . Gmodt*th(i,j,k) . . . 



Gravity waves



Reduced domain simulation
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Another practical example

Incorporate an approximate free-surface boundary into 
non-hydrostatic ocean models
“Single layer” simulation with an auxiliary boundary model 
given by the solution of the shallow water equations
Comparison to a “two-layer” simulation with density 
discontinuity 1/1000

collapses the relationship between auxiliary boundary 
models and the interior fluid domain to a single variable 
and it’s derivative!
does not provide a direct way to predict zh itself, but it 
facilitates the coupling to data, other algorithms or 
parametrizations that do.
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Incompressible Euler Equations
!incompress Euler: th,the density!
! Set th00=rh00=1
rhoinc=th(i,j,k)+the(i,j,k)
Gmod =-dth*g/rhoinc*astri
Gmodt=-dth*g/rhoinc*astrti

. . . Gmodt*th(i,j,k) . . . 

Use semi-Lagrangian option!
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Incompressible Euler Equations

c incompress Euler
ox(i,j,k,1)=ox(i,j,k,1)*rhoinc
oy(i,j,k,1)=oy(i,j,k,1)*rhoinc
oz(i,j,k,1)=oz(i,j,k,1)*rhoinc

etainv=( -Gmod*dthe(i,j,k,1)*F2str
.           +Gmod*dthe(i,j,k,2)*F2str*F3str
.           +Gmod*dthe(i,j,k,3)*(1.+F3str*F3str)
.           +Rt*(1.+F2str*F2str+F3str*F3str) )*(1.+astr)
c incompress Euler
.          *rhoinc
295 continue

-1

1/ρ should have been
added here …

instead …
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Regime diagram

supercritical

subcritical
critical, stationary lee jump

Critical, downstream propagating lee jump
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Critical – “two-layer”
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Critical – reduced domain

flat

shallow water
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Critical, downstream propagating lee jump
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Critical, downstream propagating lee jump
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The stratospheric QBO

- westward
+ eastward

(unfiltered) ERA40 data (Uppala et al, 2005)
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The laboratory experiment of Plumb and 
McEwan

The principal mechanism of the QBO was demonstrated in the 
laboratory

University of Kyoto

Plumb and McEwan, J. Atmos. Sci. 35 1827-1839 (1978)

http://www.gfd-dennou.org/library/gfd_exp/exp_e/index.htm

Animation:

(Wedi and Smolarkiewicz, J. Atmos. Sci., 2006)
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Schematic description of the QBO 
laboratory analogue

(a) (b)

S = −8

+U

−U−U

Waves propagating right Waves propagating right

Critical layer
progresses 
downward

wave 
interference

filtering filtering

(c) (d)

S = +8

−U

+U +U

Waves propagating left Waves propagating left

Critical layer
progresses 
downward

wave 
interference

filtering filtering
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Generalized coordinate equations in 
density

! Boussinesq in rho
! th means density perturbation
rhoinc=rh00
Gmod =-dth*g/rhoinc*astri
Gmodt=-dth*g/rhoinc*astrti
. . . Gmodt*th(i,j,k) . . .

Call dissip(. . .)
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Time-dependent coordinate 
transformation 

Time dependent boundaries

Wedi and Smolarkiewicz, 
J. Comput. Phys 193(1) (2004) 1-20
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Time – height cross section of 
the mean flow U
in a 3D simulation

Animation
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dya=(360./180.)*pi/float(m-1)
dy=rds*dya

c ---- specify computational grid
do 1 i=1,n
. . .
else if (icylind.eq.1) then
x(i)=(i-1)*dx ! cylindrical (m)
. . .

1 continue
do 2 j=1,m
. . . 
else if (icylind.eq.1) then
y(j)=(j-1)*dya ! cylindrical (radians)
end if

2 continue
do 3 k=1,l
z(k)=(k-1)*dz

3 continue
zb=z(l)
zb=dz*(l-1)

Cylindrical coordinates ˆ
ˆ
ˆ

ˆ
1

x R a
y R
z z

x
a

α
= −
=
=

Γ = +

gmm(i,j,k)=rdsi*(x(ia)+rds)
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Energy budget

adapted from Winters et. al. JFM 289 115-128 (1995)

Internal energyirreversible
reversible

Diffusion

Kinetic energy
Background 
potential energy

Available 
potential 
energy

External energy

Diapycnal
mixing

Buoyancy
flux

Surface flux

Surface flux

Surface flux

both

Viscous 
dissipation

Numerical
dissipation

Numerical
dissipation

Viscous
dissipation Diffusion

Numerical 
dissipation

Numerical 
dissipation

call energy(...)
(Wedi, Int. J. Numer. Fluids, 2006)
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Energy

kinetic

potential

available potential

background potential
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Energy rates

diapycnal mixing

buoyancy

viscous dissipation

diffusion

surface fluxes

irreversible
reversible
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Reversible rates (Eulerian)
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Kinetic energy (Eulerian)
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Pot. energy (Eulerian)
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Pot. energy (semi-Lagrangian)
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Flow evolution

1 2 3

1

2

3
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“Transient” energies
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Eulerian semi-Lagrangian
Viscous simulation
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Inviscid simulation

Eulerian
St=0.25, n=384

semi-Lagrangian
St=0.25, n=384

Eulerian
St=0.36, n=640
top absorber top rigid, freeslip top rigid, freeslip
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Numerical realisability

Lower horizontal resolution results in increasing period (~16 points per 
horizontal wavelength still overestimates the period by 20-30%)
Lower vertical resolution results in decreasing period and earlier onset of 
flow reversal as dynamic or convective instabilities develop instantly 
rather than previously described wave-wave mean flow interaction (need 
~10-15 points per vertical wavelength, <5 no oscillation observed)
First or second order accurate (e.g. rapid mean flow reversals with 1st

order upwind scheme)
A low accuracy of pressure solver may result in spurious tendencies with a 
magnitude similar to physical buoyancy perturbations and are due to the 
truncation error of the Eulerian scheme; equally explicit vs. implicit 
formulation of the thermodynamic equation results in distorted longer 
mean flow oscillation (explicit may be improved  by increasing the vertical 
resolution)
Choice of advection scheme (flux-form Eulerian more accurate)
Upper boundaries and stratification changes (may catalyze the onset of 
flow reversal; also in 2D Boussinesq experiments due to wave reflection, in 
atmospheric conditions also changing wave momentum flux with non-
Boussinesq amplification of gravity waves)

Influence on the period and the vertical extent of the resulting
zonal mean zonal flow changes
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Time dependent lateral meridional boundaries
Beta-plane virtual laboratory

Zonally-periodic equatorial β-plane channel

Constant ambient flow U=0.05m/s

Time-dependent lateral (y-)boundaries, using the 
continuous coordinate transformation (kx = 6 or 12, 
ω1=2π/100s, ω2=2π/120s)
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Time dependent lateral meridional boundaries

x

4.3m
2-4m

0.11m

y

Sizes and setup inspired by “Laboratory modeling of topographic Rossby
normal modes”  (Pierini et al., Dyn. Atmos. Ocean 35, 2002)

Laterally
oscillating walls

zonally periodic

1 10.093m sβ − −=

Convective vertical motions induced by 
a heated lower surface via gradient of density.
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MJO-like eastward propagating anomalies

Velocity potential anomalies
propagate eastward as a result
of the lateral meridional 
boundary forcing.
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MJO-like 
eastward 
propagating 
anomalies

horizontal structure

2D

3D



Local- and synoptic-scale simulations on 
the sphere …

The size of the 
computational domain is 
reduced without 
changing the depth or 
the vertical structure of 
the atmosphere by 
changing the radius 
(a < aEarth)

(Smolarkiewicz et al, 1998; 
Wedi and Smolarkiewicz, 2008)
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Spherical coordinates

if(isphere.eq.1) then           ! Specify ONLY dz in blanelas
dxa=(360./180.)*pi/float(n-1)   ! full zonal extent :radians
dya=(160./180.)*pi/float(m)     ! full meridional extent
dx=rds*dxa ! meters
dy=rds*dya
endif . . .
do 1 i=1,n
if(isphere.eq.1) then
x(i)=(i-1)*dxa ! sphere (radians)
end if

1 continue
do 2 j=1,m
if(isphere.eq.1) then

c        y(j)=-pih+(j-0.5)*dya ! sphere (radians)
y(j)=-(160.0/180.0)*pi+(j-0.5)*dya

end if
2 continue 

ˆ
ˆ
ˆ

ˆ
1

x a
y a
z r a

z
a

λ
φ

=
=
= −

Γ = +
gmm(i,j,k)=1+isphere*zcrl/rds
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Comparison to nonhydrostatic IFS

Based on the limited-area model ALADIN-NH (Bubnova et al 
1995, Benard et al 2004a,b, Benard et al 2005) and coded 
into the IFS by Météo-France and its ALADIN partners.

The hydrostatic shallow atmosphere framework at ECMWF 
has been gradually extended to the deep-atmosphere fully 
compressible equations within the existing spectral two-
time-level semi-implicit semi-Lagrangian code framework.

Mass-based vertical coordinate (Laprise, 1992), equivalent 
to hydrostatic pressure in a shallow, vertically unbounded 
planetary atmosphere.
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NH-IFS

EULAG

Quasi two-dimensional orographic flow 
with linear vertical shear 

H-IFS

The figures illustrate the correct 
horizontal (NH) and the (incorrect) 
vertical (H) propagation of gravity 
waves in this case (Keller, 1994). 
Shown is vertical velocity.
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Non-linear critical flow past a three-dimensional 
hill (Grubisic and Smolarkiewicz, 1997)

NH-IFS

EULAG

NH-IFSEULAG

NH-IFS

u, t*=0

w, t*=43 w, t*=43

Mountain drag

Critical
level
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Convective motion (3D bubble test)

NH-IFS EULAG

0s

1000s
Hydrostatic-IFS after 1000s

cold

warm Neutral
stratification
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Convective motion (3D bubble test)
1800s

2400s

NH-IFS EULAG
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Held-Suarez 
‘climate’ on 
reduced-size 
planet

EULAG

NH-IFS

R=0.1REarth, TL159L91
Equivalent to 
Δx = 12.5 km



ECMWF1st EULAG workshop 2008    Slide 47

Spectra of 
horizontal kinetic 
energy from the 
HS benchmark

EULAG

IFS

k-5/3

k-3

a=aE; a=aE/10

aE = Earth’s radius

Spectra the same for different radii
but represent different physical 
wavelength.
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Spectra for 
different EULAG 
options

NH-IFS

data mpfl,ampd/nth,0.00/
!data mpfl,ampd/ 6 ,0.00/

#if (J3DIM == 1)
if(iflg.ge.2.and.iflg.le.5) then
call mpdatm3(xd1,xd2,xd3,xf,d,iflg) 
else
call mpdatm3(xd1,xd2,xd3,xf,d,iflg)
!call mpdata3(xd1,xd2,xd3,xf,d,iflg)
endif
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Final comments

Herein some possibilities have been illustrated with time-
dependent coordinate transformations in horizontal and 
vertical directions and its accuracy in wave-driven flows.

Applications include two and three dimensions for 
laboratory scale, meso-scale and global-scale simulations 
in Cartesian, cylindrical or spherical geometry.

There are many more interesting applications from moving 
sand dunes to stellar applications as illustrated in previous 
and forthcoming talks.
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