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Motivation

● Global annual cloud cover > 50% (ICSSP)
● 1/3 of them is Stratocumulus
● as low-level cloud causes a cooling effect
● 4% increase of Sc cover would balance warming effect 

induced by doubling of CO2 (Randall, 1984)
● Sc are the Earth's refrigerators – ideas of influencing its 

microphysics to modify the radiative budget and so the 

climate (Latham, 2000)
● to support measurements with more comprehensive 

picture of the processes (virtual laboratory) 



  

ASTEX (1992), 
ACE-2 (1997)

FIRE (1987),
DYCOMS (1988), 
DYCOMS-II (2001),
POST(2008)

EPIC (2001),
VOCALS (2008)

Daytime Sc cloud amount(%)

IR low cloud amount (%)



  



  

Stratocumulus-topped boundary layer (STBL)

Stevens B., 2005, 
Annu. Rev.

Entrainment influences microphysics, dynamics and 
radiative properties of Sc.



  

Model setup
(based on Dycoms-II, RF01,

Stevens et al. 2005 Mon. Wea. Rev.)

Domain size: 96 x 96 x 301 

Grid box size: dx = dy = 35m, dz = 5m

(3.36 x 3.36 x 1.5 ) km

Periodic boundary conditions

No orography (flat ocean)

GEOMETRY



  

Model setup
(based on Dycoms-II)

PHYSICS geostrophic wind (7, -5.5) m/s

surface flux of heat: ~15 W/m2
surface flux of moisture: ~ 115 W/m2

large-scale subsidence: w(z)=∫D
h
dz ~mm/s

long-wave radiation: 

thin 
cloud

thick 
cloud



  

Model setup
(based on Dycoms-II 

RF01)

INITIAL PROFILES
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EULAG: dynamics – Smolarkiewicz and Margolin (1997)
bulk thermodynamics – Grabowski and Smolarkiewicz (1996)
subgrid-scale turbulence mixing – Margolin et al. (1999)

l=−
L
c p


T
ql



  

ensemble (10 models, Stevens et al. 2005,Mon.Wea.Rev):

DHARMA (A, A.Ackerman, M. Kirkpatrick, D. Stevens)
IMAU (B, Institute for Marine and Atmospheric Research, S. de Roode)
MPI (B, A. Chlond, F. Muller)
NCAR (B, C.-H. Moeng)
COAMPS (C, J.-C. Golaz)
RAMS (C, Colorado; H.-L. Jiang)
UCLA (A, B. Stevens, J. Edwards)
SAM ( A, Colorado State Univ., M. Khairoutdinov, C. Bretherton, P. Zhu, 
Randall)
METO (B, Met Office, E. Whelan, A. Lock)        B - Boussinesq
WVU (B, D. Levellen)  A - Anelastic

 C - Compressible
+ EULAG (Smolarkiewicz, Grabowski, Margolin...)

How well do the models reconstruct 
STBL?



  

How well do the models reconstruct 
STBL?

broken Sc

ensemble:

EULAGLiquid water path

cloud fraction

vert. integ. TKE



  

Decoupling within STBL 

<w'w'> <w'w'w'>

EULAG

ENSEMBLE



  

Cloud Top Entrainment Instability

Evaporative cooling vs warming by entrainment

=
c pe

Lq t
c ,c=0.23

In DYCOMS-II  κ=0.4-0.6 (instability), 
but the cloud did not decay

Deardorff, 1980
Randall, 1980



  

Where is the interface of STBL?

various definitions (local and mean)

material - (visible top of cloud – Moeng, 2005)
or threshold of some conservative scalar – 
total water mixing ratio, q

t

thermodynamic – level of maximum static stability 
(maximal gradient of virtual potential temperature θ

v
)

dynamic – threshold of enstrophy (ω2) 

Finite thickness of Entrainment Interface Layer (EIL),
 (i.e. Randall 1980, Caugey et al. 1982)



z

x

lo
g(
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Small local values also 
within boundary layer

z

e=rot U 2



  



  

QS – 'material' surface



  

TS – thermodynamic surface



  
C r=

∑i , j
h1 i , j − h1h2i , j − h2

∑i , j
h1i , j −h1

2∑i , j
h2i , j − h2

2 C
r
(TS,QS)=0.04 

TS-QS

LES

Dycoms-II

Haman et al. 
2007, QJRMS



  



  

Passive scalar analysis 
of entrainment

Idea: mark the air originating from a free-
atmosphere (dry and warm) with a tracer and 
observe its distribution within BL after some 
time

=>  injection of passive scalar into free
troposphere   (above TS=1, below=0)
after 3h of spin-up of model 

passive scalar is advected, diffused and 
affected by large-scale subsidence

NO SINKS AND SOURCES 



  

Mean profiles of passive scalar



tr=0.02 (2%)

min=0



tr=0.08  (8%)

min=450m



tr= 0.15  (15%)

min=760m





  

Ri=
g /T densityzv dz

zu
2z v

2z w
2

Ri – (in)stability of 
the flow

ω2 – enhanced 
mixing



passive scalar & isolines of 
cloud water

enstrophy

2D crosssection of domain, 3h after injection 
of passive scalar into the free troposphere



cloud top

cloud base

time



weak negative buoyancy 
production

for  0< χ < 0.18

T density=T
1r v/

1rlrvrr



Conditional profiles
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Sensitivity study



dz=2.5m dz=10m dz=5m,
ivs0





dz=2.5m
dz=10m

dz=5m, 
ivs0

Typical pdf of vertical 
velocity at z=830m

(just below the top of 
STBL)
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ivs0
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Summary:
The following mechanistic picture of the

entrainment emerges from the simulations:

-  Rising STBL impinges upon the inversion and forms “cloud 
domes”;

- EIL forms as a consequence of diverging flow, which 
increases shear and thus mixing ('preconditioned' air);

- The flow at the peripheries of these domes becomes 
unstable and mixing between STBL and FT air takes place;

- Resulting buoyancy reversal leads to a preferential 
entrainment of negatively-buoyant parcels with FT air 
fraction between 0.1 and 0.2; positively-buoyant parcels 
with higher fractions are left within EIL (selective process)

- Penetration of STBL goes through the 'cloud holes'
- Sinking air can be wrapped around the cloud edges and 

recirculated into its core, what results in an increased level 
of cloud base; the rest of it slowly dilutes STBL;


