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adaptive grid generation in [1,6], or in optimization for what is called the
Monge-Kantorovich transport or mass transfer problem [2]. While some ide-
alized forms of the MA equation admit closed-form solutions [4], those arising
from practical applications with complex boundary conditions and general MA
operator require the use of numerical algorithms [5]. In this paper we study the
use of MAE in context of improved approximations for the trajectory integrals
intrinsic to semi-Lagrangian (SL) methods for fluids

Semi-Lagrangian integration schemes arise from an ODE-like discretization

ψ(x, t) = ψ(x0, t0) +
∫

T
R (1)

of a Lagrangian evolution equation

d ψ

d t
= R , (2)

in which d/dt denotes the total derivative along the flow trajectory, ψ is an
arbitrary intensive fluid variable (e.g., temperature, chemical concentration or
velocity component), and R symbolizes the associated right-hand-side (e.g.,
heat sources, chemical reactions or pressure gradient, respectively). Assuming
the availability of ψ at all grid points xi at the instant t0, advancing the
solution to t = t0 +∆t invokes three distinct steps. First, trajectories arriving
at the grid points xi at tn+1 are evaluated backward by approximating the
path integral

x0 = xi −
∫ t

t0

v(x(τ), τ)d τ , (3)

of the kinematic relation dx/dt = v. Second, the advected dependent variable
ψ(xi, t0) is mapped to the set of the departure points ψ(xi, t0) → ψ(x0, t0) by
means of an interpolation procedure. Third, contributions from forcings are
accounted for as integrals along the trajectories [15,9,16,12].

Intimately linked to the Lagrangian formulation of fluid mechanics is the in-
terpretion of flows in terms of a space-time continuum, were the volume of
fluid elements evolves in accordance with the Euler expansion formula

d ln J

dt
= ∇ · v , (4)

with J := det(∂x/∂x0) denoting the flow Jacobian [3]. Together with the
evolutionary form of the mass continuity equation

d ρ

d t
= −ρ∇ · v , (5)

the Euler formula (4) constitutes the base of the Lagrangian form of the mass
conservation law

ρ(x
i
, t) = Ĵρ(x0, t0), (6)
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We solve the Lagrangian form of the 
equations of motion using the NFT semi-
Lagrangian algorithm embedded in the 
EULAG model for flows that satisfy the 
incompressibility constraint.

Truncation errors in the evaluation of (1) 
induce errors in the flow Jacobian and so 
its compatibility with (2) is not ensured. 

Fig. A:  Solid and dashed lines denote the exact and approximate 
paths implied by equation (1) and to its discretized counterpart, 
respectively. Spheres denote points on the computational grid.  
Assuming the availability of     at the grid points at time     , 
advancing the solution in time invokes three distinct steps. First, 
the departure points       of the fluid particles arriving at      are 
evaluated by approximating (1). Second, the transported variable      
is mapped to the set of the departure points by means of 
interpolation                                 .  Third, contributions from 
forcings are accounted for as integrals along the trajectories (3). 
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Semi-Lagrangian schemes form a class of 
numerical techniques that approximate the path 
integral (3) of the differential equation                
for the evolution of the intensive variable          
(e.g. temperature, a velocity field component, 
etc...) with     symbolizing forcings on that variable 
(e.g. buoyancy, coriolis acceleration, Lorentz force, 
etc...). The path is defined by the trajectory 
integral (1) associated with the kinematic    
relation                      .

Deformation and production of 
gravity waves takes place in the 
collapse of a stratified bubble of 
fluid inside an inviscid adiabatic 
Boussinesq flow.  

days, MAE is at the core of many computational applications deriving from

imaging technology, optimization, geophysical fluid dynamics [2, 5] and cos-

mology [17]. Here, we solve MAE to examine the impact of enforcing the

mass continuity constraint upon semi-Lagrangian (SL) integrations of equa-

tions governing fluid dynamics [4, 11, 16], written compactly as

x0 = xi −
∫ t

t0

v(x(τ), τ)d τ , (1)

ρ(xi, t) = Ĵρ(x0, t0) , (2)

ψ(xi, t) = ψ(x0, t0) +

∫

T

R dt , (3)

where positions (xi, t) and (x0, t0) are, respectively, the arrival grid and de-

parture points taken along a parcel trajectory T , ρ denotes the density,

Ĵ ≡ J−1 = det{∂x0/∂x} is the inverse flow Jacobian and ψ symbolizes a

specific fluid variable (e.g., temperature or a velocity component) with R its

associated forcing.

Although conservative SL schemes already exist and are used in numer-

ical weather prediction [13], approximations to the trajectory integrals (1)

are typically incompatible with the Lagrangian form of the mass continuity

equation (2)1. In particular, for incompressible fluids the volume of each

fluid element remains constant, upon which the relation Ĵ = 1 becomes a

necessary condition for the scheme compatibility.

On the basis that vortical motions do not induce any change in the volume

1This contrasts with Eulerian finite-volume methods, in which advecting velocities most

often comply with the discrete mass continuity.

2

To enforce the compatibility of (1) with 
(2), we introduce a correction that has 
the form of the gradient of a scalar 
potential.
of fluid elements, we correct the estimated path-mean velocity

ṽ ≈ (∆t)−1

∫ t

t0

v(x(τ), τ)d τ , (4)

in the discretized counterpart of (1) with the gradient of a potential φ

(x0)C = xi − ∆t (ṽ −∇φ) , (5)

such that the resulting set of departure points (x0)C satisfies

det

{
∂(x0)C

∂x

}
= 1 , (6)

which happens to be a form of the MAE. An exact-projection-type solver,
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For (2) to be satisfied in incompressible flows, one 
must then find the solution to

which turns out to be a form of Monge-Ampère 
equation (MAE).  A Jacobian-Free Newton-Krylov 
method is used to find approximate solutions to     

Analysing the solution of the MAE in the 
vicinity of its stationary points reveals 
that it compensates, via the trajectory 
correction, the anomalous fluid 
contraction or expansion induced by flow 
rotation and deformation.

Enhanced shape preservation 
and scalar conservation result 
from the MAE corrrection.

Enforcing compatibility 
amplifies the inverse 
energy cascade in 2D 
fully-developped 
turbulence.

Fig. E:  Time evolution of the power spectrum in a simulation of 
2D decaying turbulence.

Fig. I:  Cross-sections from figure H-a (top) and H-b (bottom). 
The regions corresponding to the bold level curve are 
multiply and simply connected for uncorrected and corrected 
SL schemes, respectively.

Fig. H: Isosurfaces of 
potential  temperature 
resulting from first 
(top) and second order 
(bottom) trajectory 
evaluations for 
uncorrected (left) and 
corrected (right) SL 
schemes. 

The topology of material 
elements is better 
preserved by the MA-
enhanced SL scheme.

Fig. C:  Graph of an approximate 
MAE solution in a pure rotational 
flow superposed over a contour 
plot of vorticity.

.
.

Fig. G: Coutour plots of 
the potential 
temperature 
distribution at initial 
time (left) and after 
1.68 inverse Brunt-
Väisälä frequencies.

Fig. B:  Direction of the 
applied MAE 
correction in the 
vicinity of a stationary 
point corresponding to 
pure flow rotation.

Fig. F:  Direction of 
the applied MAE 
correction in the 
vicinity of a 
stationary point 
corresponding to 
pure flow 
deformation.

Fig. 10. Contour lines of the full potential temperature θ at intial time (left) and at
τ = 1.32N .

flows [?]; this property can however be broken when numerical dissipation
comes into play. In particular, passively advected variables such as θ Figure
11 shows four different solutions at time t = 1.32N obtained for the uncor-
rected and corrected trajectory estimates (22) and (23). The top panels show
the isosurfaces θ′ = −1.25 for experiments using (22) and the bottom ones
show θ′ = −0.86 for those using (23), with the result of the uncorrected and
corrected schemes displayed in the left and right panels.

5 Remarks

dψ/dt = R

6 Appendix A. Exact solution to (3) for the stream-
function ζ = sin(x) sin(y)

The MATHEMATICA software was used to evaluate the error in the trajectory
evaluations e∞ = ||xm

0 + ∆t∇φ− x̄0||∞. The exact solution to (3), denoted by
x̄0 is given by

x̄0(xi)= arccos
(
sn(σ∆t + Cx(xi)|m))

)

ȳ0(xi)= arccos
(
sn(σ∆t + Cy(xi)|m))

)
, (30)
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exact trajectory (see fig. 7) and reducing ||r||∞ by only an order of magni-
tude provides the smallest error to the exact solution and δ < ψ > given a
second-order discretization of (25). Further decreasing ||r||∞ is useless, since
||e||∞, δ < ψ > and δ < ψ2 > all increase once ||r||∞ < 9.96 × 10−5. This
indicates that the way (25) is discretized only has an impact on the details
of the computed solution, althought major improvment of the solution pro-
duced by any of standard trajectory estimates (22) or (23) is achieved after
||r||∞/||r0||∞ < 0.001 whether a second or fourth-order accurate stencil is
employed.

The heuristic argument that motivated the adopted form of the correction
(10), namely, that changes in volumes of fluid are only induced by non-vortical
motions (i.e. ∇ ·v #= 0), is strictly valid in the limit t −→ t0 in the discretized
counterpart of (3). Figures 6 and 7 have shown that enforcing Ĵ = 1 via (10)
better preserves the area of the fluid elements by compensating for the anoma-
lous fluid contraction. Passive advection tests have shown the repercussion of
the latter on the fullfillment of (6) throught the enhanced conservation and
shape preservation of the initial tracer. Theoretical and experimental evidence
provided by sections 2 and 4 therefore suggest that the formulation (10) is ap-
propriate for the purpose of enforcing (6). Experiments using the shifted func-
tion ψS showed that improved conservation resulting from the MAE correction
is attenuated when the accuracy of the remapping operation is reduced due
to steepening of the advected variable’s field. Measuring the combined effect
of both when solving a full physical problem is therefore crucial in assessing
the utility of (10) for real flows, a task which is taken up next.
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Fig. D:  Top left: Contour plot of the initial tracer. The dashed line 
shows the cross-section that is displayed in the other panels. Top 
right: Cross-section shown in the top left panel at various times 
for the uncorrected Euler-forward method. Bottom left: Initial 
tracer cross-section (solid line) and the uncorrected mid-point 
rule solution at t= 30 P (dashed line), Bottom right: Initial tracer 
cross-section (solid line) and MAE correction solution at t=30 P 
whwen applied to the second-order accurate scheme. P is the 
period of the trajectory passing through                .
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a b

c d

conservation law
ρ(xi, t) = Ĵρ(x0, t0), (6)

where Ĵ ≡ J−1 = det(∂x0/∂x) = 1 is the inverse flow Jacobian. Consequently,
truncation errors in the evaluation of the departure points induce errors in the
flow Jacobian, and so the compatibility of discrete counterparts of the integrals
(1) and (3) with (6) is not ensured. This contrasts with Eulerian finite-volume
methods, in which advecting velocities most often comply with the discrete
mass continuity. In particular, for incompressible fluids the volume of each
fluid element remains constant, upon which the relation Ĵ = 1 becomes a
necessary condition for the scheme compatibility. This archetype will be used
throughtout this paper to assess the impact of incompatible integrations on
the observed flow features.

To ensure the compatibility condition, we correct the estimated departure
points according to (x0)C = x0 + (t − t0)∇φ. The potential φ satisfies the
partial differential equation (PDE) implied by

det





∂(x0)C

∂x




 = 1 , (7)

which happens to be a form of MA equation. A solver capable of solving
the exact projection of (7) is developped and used to study the impact of
the corrected trajectories onto a variety of 2D and 3D experiements; passive
advection in a cellular flow, freely evolving hydro and MHD turbulence with
and without rotation as the formation of gravity waves in a Boussinesq fluid.
In section 2 we discuss the derivation of MAE as well as its properties in
terms of flow rotation and deformation. Section 3 treats the implementation
of MAE solvers in the context of a semi-Lagrangian scheme. Numerical results
are presented in section 4 and remarks in section 5 conclude the paper.

2 The Monge-Ampère equation

A wide class of ODE-like discretizations of the trajectory integral (3) arise as
particular cases of the general linear formula (2.4.22) in [12], the two-point
subcase of which is relevant to the SL scheme approximation and can be
written as

x0 = xi + ∆t Φ(t0, t;x0,xi) , (8)

with t = t0 + ∆t and

Φ = c0 v(t0,x0) + c v(t,xi) ≡ −ṽ . (9)

Here, the weights c + c0 = 1, together with the algorithm used to solve the
implicit system of nonlinear equations (8) for the unknowns x0, determine the

3


