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Semi-Lagrangian schemes form a class of

numerical techniques that approximate the path
integral (3) of the differential equation di)/dt = R
for the evolution of the intensive variable 1)

(e.g. temperature, a velocity field component,

etc...) with I? symbolizing forcings on that variable
(e.g. buoyancy, coriolis acceleration, Lorentz force,
etc...). The path is defined by the trajectory

integral (1) associated with the kinematic

relation dx/dt = v.

Fig.F: Direction of
the applied MAE
correction in the
vicinity of a
stationary point
corresponding to
pure flow
deformation.

Fig. G: Coutour plots of
the potential
temperature
distribution at initial
time (left) and after
1.68 inverse Brunt- z
Viisila frequencies.
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T Fig.A: Solid and dashed lines denote the exact and approximate
paths implied by equation (1) and to its discretized counterpart,
respectively. Spheres denote points on the computational grid.
Assuming the availability of 1) at the grid points at time £,
advancing the solution in time invokes three distinct steps. First,
the departure points X( of the fluid particles arriving at X are
evaluated by approximating (). Second, the transported variable )

is mapped to the set of the departure points by means of
interpolation (i, t0) — (X0, to). Third, contributions from
forcings are accounted for as integrals along the trajectories (3).

Fig. H: Isosurfaces of
potential temperature
resulting from first

(top) and second order
(bottom) trajectory
evaluations for
uncorrected (left) and
corrected (right) SL
schemes.
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Fig. D: Top left: Contour plot of the initial tracer. The dashed line
shows the cross-section that is displayed in the other panels. Top
right: Cross-section shown in the top left panel at various times
for the uncorrected Euler-forward method. Bottom left: Initial
tracer cross-section (solid line) and the uncorrected mid-point

rule solution at t= 30 P (dashed line), Bottom right: Initial tracer
cross-section (solid line) and MAE correction solution at t=30 P
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For (2) to be satisfied in incompressible flows, one
must then find the solution to
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MAE solution in a pure rotational
flow superposed over a contour
plot of vorticity.
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Fig. B: Direction of the

applied MAE ;
correction in the
vicinity of a stationary o |

point corresponding to

pure flow rotation.

Fig.1: Cross-sections from figure H-a (top) and H-b (bottom).
The regions corresponding to the bold level curve are
multiply and simply connected for uncorrected and corrected

0.2 SL schemes, respectively.
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