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Solar magnetism

« If the sun did not have a magnetic 
field, it would be as boring a star as
most astronomers believe it to be »

(Attributed to R.B. Leighton)
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Harriot, Fabricius, Galileo, Scheiner,
…
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The sunspot cycle
Discovered in 1843 by an amateur astronomer, after 17 years
of near-continuous sunspot observations

Heinrich
Schwabe

Rudolf Wolf

The sunspot cycle has a period of about 11 years, and its
amplitude shows important cycle-to-cycle fluctuations
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Le cycle magnétique (3)

Data animation courtesy D. Hathaway, NASA/MSFC
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The solar magnetic cycle

Synoptic magnetogram courtesy D. Hathaway, NASA/MSFC
http://solarscience.msfc.nasa.gov/images/magbfly.jpg
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3 Mechanisms of Magnetic Field Generation

The Sun’s poloidal magnetic component, as measured on photospheric magnetograms, flips polar-
ity near sunspot cycle maximum, which (presumably) corresponds to the epoch of peak internal
toroidal field T . The poloidal component P , in turn, peaks at time of sunspot minimum. The
cyclic regeneration of the Sun’s full large-scale field can thus be thought of as a temporal sequence
of the form

P (+) → T (−) → P (−) → T (+) → P (+) → . . . , (9)

where the (+) and (−) refer to the signs of the poloidal and toroidal components, as established
observationally. A full magnetic cycle then consists of two successive sunspot cycles. The dynamo
problem can thus be broken into two sub-problems: generating a toroidal field from a pre-existing
poloidal component, and a poloidal field from a pre-existing toroidal component. In the solar case,
the former turns out to be easy, but the latter is not.

3.1 Poloidal to toroidal

Let us begin by expressing the (steady) large-scale flow field u as the sum of an axisymmetric
azimuthal component (differential rotation), and an axisymmetric “poloidal” component up (≡
ur(r, θ)êr + uθ(r, θ)êθ), i.e., a flow confined to meridional planes:

u(r, θ) = up(r, θ) +"Ω(r, θ)êφ (10)

where " = r sin θ and Ω is the angular velocity (rad s−1). Substituting this expression into
Equation (5) and into the φ-components of Equation (1) yields

∂A

∂t
= η

(
∇2 − 1

"2

)
A

︸ ︷︷ ︸
resistive decay

− up

"
·∇("A)

︸ ︷︷ ︸
advection

, (11)

∂B

∂t
= η

(
∇2 − 1

"2

)
B

︸ ︷︷ ︸
resistive decay

+
1

"

∂("B)

∂r

∂η

∂r︸ ︷︷ ︸
diamagnetic transport

− "up ·∇
(
B

"

)

︸ ︷︷ ︸
advection

−B∇ · up︸ ︷︷ ︸
compression

+"(∇× (Aêφ)) ·∇Ω
︸ ︷︷ ︸

shearing

. (12)

Advection means bodily transport of B by the flow; globally, this neither creates nor destroys
magnetic flux. Resistive decay, on the other hand, destroys magnetic flux and therefore acts as a
sink of magnetic field. Diamagnetic transport can increase B locally, but again this is neither a
source nor sink of magnetic flux. The compression/dilation term is a direct consequence of toroidal
flux conservation in a flow moving across a density gradient. The shearing term in Equation (12),
however, is a true source term, as it amounts to converting rotational kinetic energy into magnetic
energy. This is the needed P → T production mechanism.

However, there is no comparable source term in Equation (11). No matter what the toroidal
component does, A will inexorably decay. Going back to Equation (12), notice now that once A
is gone, the shearing term vanishes, which means that B will in turn inexorably decay. This is
the essence of Cowling’s theorem: An axisymmetric flow cannot sustain an axisymmetric magnetic
field against resistive decay2.

2 Note, however, that an axisymmetric flow can sustain a non-axisymmetric magnetic field against resistive
decay.

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2010-3

The evolution of the large-scale solar magnetic field may be thought 
of as a temporal sequence of the form 
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Modeling the Solar Cycle

Toroidal to Poloidal 
• Babcock-Leighton dynamo 
• alpha-effect (mean-field theory, mid 1950s)

Poloidal to Toroidal : Shearing of  Poloidal into Toroidal by 
differential rotation
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where " = r sin θ and Ω is the angular velocity (rad s−1). Substituting this expression into
Equation (5) and into the φ-components of Equation (1) yields

∂A

∂t
= η

(
∇2 − 1

"2

)
A

︸ ︷︷ ︸
resistive decay

− up

"
·∇("A)

︸ ︷︷ ︸
advection

, (11)

∂B

∂t
= η

(
∇2 − 1

"2

)
B

︸ ︷︷ ︸
resistive decay

+
1

"

∂("B)

∂r

∂η

∂r︸ ︷︷ ︸
diamagnetic transport

− "up ·∇
(
B

"

)

︸ ︷︷ ︸
advection

−B∇ · up︸ ︷︷ ︸
compression

+"(∇× (Aêφ)) ·∇Ω
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Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2010-3

Numerical models of solar convection; a vast range of scales: 
Dissipation scale of smallest eddies (Kolmogorov scale) ~1cm
Largest scales involved (Sun’s radius) ~ 1000 km
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The anelastic MHD equations
Implicit dissipation, 3rd 
order MPDATA

forces the 
system towards 
an unstable 
ambient 
stratification

Implicitly forcing the system towards an unstable ambient state avoids the 
need for an eddy thermal diffusivity that accounts for energy transport by 
the unresolved motions as well as specification of top and bottom heat 
fluxes.

Global acoustic modes ~ 1 hour or less
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Selected milestones

Browning et al. 2006: Demonstrate the importance of an underlying,
convectively stable fluid layer below the convection zone in producing 
a large-scale magnetic component in the turbulent regime.

Brun et al. 2004: Strongly turbulent MHD simulation, producing copious
small-scale magnetic field but no large-scale magnetic component.

Glatzmaier 1984, 1985: Anelastic model including stratification, large-scale
fields with polarity reversals within a factor 2 of solar period; tendency for
equatorward migration of the large-scale magnetic field. Approximately
cylindrical isocontours of internal rotation.

Gilman 1983: Boussinesq MHD simulation, producing large-scale magnetic
fields with polarity reversals on yearly timescale; but non-solar large-scale
organization.

Miesch et al. 2000: Strongly turbulent HD simulation, producing a
reasonably solar-like internal differential rotation profile.

Brown et al. 2009, 2010: Obtain polarity reversals of thin, intense toroidal
field structure in a turbulent simulation rotating at 3X solar.
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Published in May 2010

For updates on simulation results, see GRPS Web Page:
   http://www.astro.umontreal.ca/~paulchar/grps
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The si
Domain is a rotating stratified
shell of electrically conducting
fluid 0.61 to 0.96 solar radius 
thick, with the solar luminosity
forced across the shell.

Simulation setup:

The background stratification
is convectively unstable 
in 0.71< r/R <0.96, and 
stable below (important!).

Initial condition: unmagnetized hydrostatic, random flow and field
perturbations introduced at t=0.
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Numerical approximations
In addition to the usual advective nonlinearity, nonlinear forcing terms that 
couple the velocity and magnetic fields deserve special treatment when 
integrals are being constructed 

that do produce well-organized large-scale mag-
netic fields undergoing regular cyclic polarity re-
versals on decadal timescales.

2. Model formulation

Our global model integrates the anelastic form
of the MHD equations (Glatzmaier 1984) in a
thick, rotating spherical shell of electrically con-
ducting fluid. We use a modified version of the
general-purpose hydrodynamical simulation code
EULAG (cf. Prusa et al 2008 for a review) in
which we have introduced magnetic fields and
a solar-like stratification of the ambient state.
Our overall simulation setup is similar to that
in Browning et al. (2006). The solution domain
spans the range 0.61 ≤ r/R! ≤ 0.96, covering 3.4
density scale heights and across which we force
the solar heat flux. The background stratifica-
tion is convectively stable in the bottom portion
of the domain (0.61 ≤ r/R! ≤ 0.71), and un-
stable above. Stress-free boundary conditions are
imposed at the top and bottom boundaries, with
the magnetic field set to zero at the bottom (per-
fect conductor) and constrained to remain radial
at the top (magnetically open). We defer an expo-
sition of the model formulation to a forthcoming
publication, with only a few highlights provided
below.

The anelastic hydrodynamic SCZ model of El-
liot & Smolarkiewicz (2002) is cast in an an-
holonomic time-dependent curvilinear framework
of Prusa & Smolarkiewicz (2003), which enables
mesh adaptivity, and extended to MHD. The gov-
erning equations take the form:
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= −∇π∗ + (B ·∇)v −B(∇ · v) + DB ,

∇ · (ρov) = 0 , ∇ ·B = 0 ,

where v and B denote vectors of the physical ve-
locity and of the magnetic field, measurable at ev-
ery point of the spherical shell in a local Carte-
sian frame tangent to the lower surface of the
shell, and θ is the potential temperature (tanta-
mount to the specific entropy, s = cp ln θ). Sub-
scripts “o ” refer to the basic isentropic state with

density satisfying hydrostatic balance with radi-
ally decreasing gravity. Primes denote deviations
from an arbitrary prescribed ambient state (which
can, but does not have to, coincide with the ba-
sic state; Prusa et al. 2008). In the momentum
equation, π is a density-normalized pressure per-
turbation inclusive of the magnetic pressure and
centrifugal force, and Dv symbolizes viscous dis-
sipation. In the entropy equation, H combines
heat sink/sources due to radiation, diffusion and
viscous heating. The Newtonian relaxation term,
with an inverse time-scale α, forces the system to-
wards an ambient stable/unstable thermodynamic
profile in the tachocline/SCZ. In the induction
equation, the gradient of potential π∗ denotes an
auxiliary term introduced to assure ∇ · B = 0 in
numerical integrations, and DB is a short hand for
magnetic diffusion. All other symbols have their
usual meaning. Using the mass continuity equa-
tion and the B solenoidality constrain, the system
(1) is rewritten as a set of Eulerian conservation
laws and solved using the non-oscillatory forward-
in-time (NFT) approach, widely documented in
the literature; cf. Prusa et al. 2008 and Smo-
larkiewicz & Szmelter (2009) for recent reviews
and discussions. In essence, the resulting system
of PDE is viewed as
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+ ∇ · (V∗Ψ) = R , (2)

where Ψ denotes the vector of prognosed depen-
dent variables (components of v, B and θ′), ρ∗ =
Gρo combines the anelastic density and the Jaco-
bian of coordinate transformation, V∗ = ρ∗ẋ is
an effective transporting momentum with ẋ sym-
bolizing the contravariant velocity of the actual
curvilinear coordinates, and R is a shorthand for
the associated right-hand-side (rhs) inclusive of
the metric forces (viz. Christophel’s terms). The
model algorithm for a discrete integration of (2)
in the time-space continuum relies on the implicit
trapezoidal rule approximation. It is formulated
in the spirit of
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with n, i and δt marking discrete locations in
the model (t,x) domain and a temporal incre-
ment, L and N denoting linear and nonlinear
part of the rhs operators, Ψ ≡ (v, θ′, B), Φ ≡
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with n, i and δt marking discrete locations in the model (t,x) domain and a
temporal increment, L and N denoting linear and nonlinear part of the rhs
operators, Ψ ≡ (v, θ′, B), Φ ≡ 0.5δt(φ, φ, φ, 0, φ∗, φ∗, φ∗), and ν = 1, .., m
numbering the fixed point iterations. With all prognostic dependent variables
co-located, the execution of (3) invokes its local algebraic inversion with respect
to Ψ

n,ν
i

; after which, enforcing discretized mass continuity and magnetic-field
solenoidality on the components v and B leads to the associated discrete el-
liptic problems for φ and φ∗. These are solved with a robust, preconditioned
non-symmetric Krylov-subspace solver (Smolarkiewicz et al., 1997, 2004), es-
sentially completing the model algorithm. A key element of the NFT ap-
proach implemented in EULAG is a universally second-order-accurate (in time
and space) NFT advection operator MPDATA that forms the explicit element
Ψ̂i ≡ Ai(Ψn−1 + 0.5δtRn−1, Ṽ∗) of (3), with A and Ṽ∗ denoting, respectively,
the advection operator and a solenoidal O(δt2) estimate of V∗ at tn−1/2. MP-
DATA is a finite-volume, high-resolution multi-pass (iterative) upwind scheme,
already well reviewed in the literature; cf. Smolarkiewicz & Szmelter (2009),
and references therein.

A particular feature of MPDATA important for the present study is its
proven dissipative property mimicking the action of explicit subgrid-scale tur-
bulence models where flow is under-resolved, while maximizing the effective
Reynolds number; see Waite & Smolarkiewicz (2008) and Piotrowski et al.
(2009), for relevant discussions and references. Such calculations relying on
the properties of non-oscillatory differencing are referred to in the literature
as implicit large-eddy simulations, or ILES. In the experiments reported here,
we retained only the radiative diffusion in the H forcing term on the rhs of
the entropy equation in (1), while delegating the entire system dissipativity to
ILES. Moreover, we use exclusively the third-order (for constant coefficients but
second-order in general) option of MPDATA that minimizes the solution depen-
dence on local Courant numbers while evincing desirable dissipative properties
(Margolin and Smolarkiewicz 1998, Margolin et al. 2006).

3

Numerics: Implicit LES based on MPDATA high-order upwind advection
scheme; minimally diffusive, finite volumes, divergence cleaning

Boundary conditions: top: stress-free and purely radial field;
bottom: perfect conductor and rigid rotation
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Convection and small-scale magnetic fields

Turbulent convection, in itself, produces a lot of magnetic field,
but very little net magnetic flux on the larger spatial scales
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The large-scale magnetic fields (1)

Mollweide projection of toroidal magnetic component
immediately beneath core-envelope interface

Field is very « turbulent », due to convective undershoot;

Fairly well-defined axisymmetric component, antisymmetric 
about equatorial plane;

Hemispherically synchronous polarity reversals on ~30 yr timescale.
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Magnetic cycles (1)

Time-latitude diagram of zonally-averaged toroidal
component at core-envelope interface (r/R=0.718)

IF flux rope formation is proportional to toroidal field strength,
and IF flux ropes rise radially through convective envelope,

then this is the simulation’s analog to the sunspot butterfly diagram

Tesla
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Magnetic cycles (2)
Surface radial magnetic field over
 North and South polar caps

Nonetheless, there is a clear axisymmetric 
component on the larger spatial scales.

Magnetic field is very intermittent
spatiotemporally

Polarity reversals  begin at mid-latitude
and proceeds towards pole.

Pattern of polar cap B_r shows a very
well-defined dipole moment, very well 
aligned with rotation axis.
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Magnetic cycles (3)

Time-latitude diagram of zonally-averaged surface radial component

Hint of surface fields migrating from low-latitudes to polar regions

 Large-scale surface magnetic field strongly peaked at high latitudes

Very high degree of hemispheric symmetry
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Other interesting simulation features

Magnetically-mediated cyclic modulation of convective energy
transport.

Magnetically-mediated cyclic modulation of large-scale meridional
flow in convection zone.

Solar-like differential rotation: equatorial acceleration, with
tachocline-like shear layer at core-envelope interface. 

Torsional oscillations originating at high latitudes and migrating
equatorward to mid-latitudes, with 2-cycle overlap.

Azimuthal turbulent electromotive force sustaining axisymmetric 
large-scale poloidal magnetic component.
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The alpha-effect
Expressing the velocity and magnetic fields as the sum of a small-scale 
and a large-scale component,

one obtains the induction equation for the evolution of a large-scale 
magnetic field involving the curl of the product of small-scale fluctuations

The so-called mean-field electro-motive force (EMF)

provides a mechanism for the production of a large-scale poloidal magnetic 
field from the toroidal component induced by differential rotation.188 CHAPTER 9. MEAN-FIELD THEORY

Figure 9.1: A sketch of magnetic line of force entrained by a cyclonic, rising fluid element in
the frozen-in limit. Note that the resulting cyclonic loop can be viewed as resulting from an
element of electric current flowing parallel to the original, uniform magnetic field. [from: Parker
1970, The Astrophysical Journal, vol. 162, Figure 1].

An important property of α is its pseudoscalar nature, i.e. α changes sign under parity
transformations. This implies that α can be nonzero only if the statistics of u lacks reflectional
symmetry. In other words the velocity field must have a definite handedness (also called chiral-
ity). In the example above there is a definite relationship between vertical displacements and
sense of circulation.5 In general the lack of reflectional symmetry of the fluid velocity manifests
itself through a nonzero value of the fluid helicity, 〈u · (∇× u)〉, itself a pseudo scalar. As we
shall presently see there is an important relation between fluid helicity and the α–effect.

We now turn to the next term in the expansion (9.7), namely

E(2)
i = βijk∂k〈B〉j . (9.14)

The physical interpretation of the third-rank pseudotensor, βijk, is again most easily gained
when u is isotropic, and so we dispense with general considerations and cut straight to the
chase. For isotropic turbulence, it follows that, βijk = βεijk, where β is a scalar, and so we
have

∇× E(2) = ∇×
(

−β∇× 〈B〉
)

= β∇2〈B〉. (9.15)

We recognize the scalar β as an additional contribution to the effective diffusivity of 〈B〉, which
thus becomes ηe ≡ η + β. In cases where β ' η one refers to ηe ≈ β as the turbulent
diffusivity.

In summary, our heuristic treatment of mean-field electrodynamics has led us to an evo-
lution equation for the large-scale magnetic field, 〈B〉, which takes account of coherences be-
tween fluctuation-fluctuation interactions of the small-scale turbulent magnetic and velocity
fields. For homogeneous, stationary, and isotropic velocity turbulence, this equation assume
the particularly elegant and physically intuitive form

∂〈B〉

∂t
= ∇×

(

〈U〉 × 〈B〉
)

+ α∇× 〈B〉 + (η + β)∇2〈B〉. (9.16)
5Why?

Paul Charbonneau, Université de Montréal phy6795v08.tex, November 10, 2008

16 CHAPTER 1. MAGNETOHYDRODYNAMICS

where summation over repeated indices is implied here. Note that since φν is positive definite,
its presence on the RHS of eq. (1.48) can only increase the fluid element’s entropy, which makes
perfect sense since friction, which is what viscosity is for fluids, is an irreversible process.

For more on classical hydrodynamics, see the references listed in the bibliography at the
end of this chapter.

1.3 The magnetohydrodynamical induction equation

Our task is now to generalize the governing equations of hydrodynamics to include the effects
of the electric and magnetic fields, and to obtain evolution equations for these two physical
quantities. Keep in mind that electrical charge neutrality, as required by MHD, does not imply
that the fluid’s microscopic constituents are themselves neutral, but rather that positive and
negative electrical charges are present in equal numbers in any fluid element.

The starting point, you guess it I hope, is Maxwell’s celebrated equations:

∇ · E =
ρe

ε0
, [Gauss′ Law] (1.50)

∇ · B = 0 , [Anonymous] (1.51)

∇× E = −
∂B

∂t
, [Faraday′s Law] (1.52)

∇× B = µ0J + µ0ε0
∂E

∂t
, [Ampere/Maxwell′s Law] (1.53)

where, in the SI system of units, the electric field is measured in N C−1 (≡ V m−1), and the
magnetic field2 B in tesla (T). The quantity ρe is the electrical charge density (C m−3), and
J is the electrical current density (A m−2). The permittivity ε0 (= 8.85 × 10−12C2 N−1m−2

in vacuum) and magnetic permeability µ0 (= 4π × 10−7 N A−2 in vacuum) can be considered
as constants in what follows, since we will not be dealing with polarisable or ferromagnetic
substances.

The first step is (with all due respect to the man) to do away altogether with Maxwell’s
displacement current in eq. (1.53). This can be justified if the fluid flow is non-relativistic and
there are no batteries around being turned on or off, two rather sweeping statement that will
be substantiated in §1.5. For the time being we just revert to the original form of Ampère’s
Law:

∇× B = µ0J . (1.54)

In general, the application of an electric field E across an electrically conducting substance will
generate an electrical current density J. Ohm’s Law postulates that the relationship between
J and E is linear:

J′ = σE′ , (1.55)

where σ is the electrical conductivity (units: C2s−1m−3kg−1 ≡ Ω−1m−1, Ω ≡Ohm). Here
the primes (“′”) are added to emphasize that Ohm’s Law is expected to hold in a conducting
substance at rest. In the context of a fluid moving with velocity u (relativistic or not), eq. (1.55)
can only be expected to hold in a reference frame comoving with the fluid. So we need to
transform eq. (1.55) to the laboratory (rest) frame. In the non-relativitic limit (u/c & 1,
implying γ → 1), the usual Lorentz transformation for the electrical current density simplifies

2Strictly speaking, B should be called the magnetic flux density or somesuch, but on this one we’ll stick to
common astrophysical usage.

Charbonneau/Barlet, Université de Montréal saasfe09.tex, May 6, 2010

Ampère’s Law, pre-Maxwellian from
(non-relativistic MHD)
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Differential rotation and kinetic helicity 

Differential rotation is reasonably
solar-like, with shear layer at core-
envelope interface.

Kinetic helicity is negative in bulk
of N-hemisphere, as expected
from action of Coriolis force.
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Mode of dynamo action 
[ Lead: Étienne Racine ]

Time-latitude diagram of phi-component of the turbulent
emf < u’ x b ’> at mid-depth in the convective envelope.

Turbulent emf has same sign in each hemisphere

This is consistent with the idea of a turbulent alpha-effect 
producing the observed dipole moment

Turbulent emf changes sign from one cycle to the next
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Torsional oscillations
[ Lead: Patrice Beaudoin (M.Sc.) ]

m/s
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Impact on convective energy transport

Zonal mean of potential temperature perturbation at core-envelop interface

Zonal mean of potential temperature perturbation below the model surface (r/R=0.96).

Weak but significant
temperature excess
at the top of the simulation
domain, at « maximum »
phase of cycle.

Temperature modulation
already present at the base
of the convective envelope,
varying in phase with the cycle.

Zonal mean toroidal magnetic field at core-envelop interface (r/R=0.718)

Preliminary results; 
Lead: Jean-François
Cossette (Ph.D.)
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Link with total solar irradiance variations



Second Eulag workshop, 13-16 sept. 2010

Conclusions

1. We do not understand the origin of fluctuations
in solar cycle amplitude and duration

3. A weak but clear cyclic modulation of convective
energy transport is present in the simulations. 

3D global MHD simulations of solar-like cycles
have landed.

2. We currently do not understand what sets our 30 yr 
cycle period, nor why we get cycles and others do not …
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Conclusions
In ideal MHD systems, total magnetic helicity is conserved:

(3). Les ondes sonores dues aux varitations temporelles de la densité sont donc éliminées du
systéme (5)-(8), un fait démontré formellement par les auteurs au moyen d’une analyse des
solutions de la forme ψ = exp(ikx + ly + νt).

Les premiers investigateurs de l’approximation anélastique dans le contexte de la convection
thermique dans les étoiles, Peter Gilman et Gary Glatzmaier, se penchent sur le problème de la
modélisation numérique d’une sphère de fluide conducteur dans lequel se développe un champ
magnétique. Ceux-ci s’intéressent à l’interaction entre la convection et la rotation du Soleil sur
lui-meme pour mieux comprendre le phénomène de la rotation différentielle. Leur motivation
pour l’usage de cette approximation vient du fait que la période de rotation moyenne du Soleil,
de l’ordre d’un mois, est beaucoup plus longue que celle des modes p, qui est de l’ordre de la
minute. Il semble donc probable que les ondes acoustiques n’ont aucun role a jouer dans la
régulation de la rotation. Des études similaires à celle-ci avaient été conduites auparavant dans
le cadre de l’approximation de Boussinesq. Au contraire de l’approximation anélastique, celle-ci
ne permet pas de tenir compte de l’effet des larges variations de la densité sur la dynamique du
système physique étudié, telles celles qui caractérisent la zone convective du Soleil.

∫

V
A · B dx

2

Generation of a large-scale magnetic component (and therefore a large-scale 
helicity) therefore requires that small-scale helicity is either

1.stored at small-scales in opposite sign to that of large-scale helicity
(inhibits alpha effect, Brandenburg &Subramanian 2007)

2. expelled out of the domain
(demands proper boundary conditions)

or

3. dissipated
or
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FIN
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Three fundamental issues
1. What kind of dynamo model best describes the
     solar cycle: mean-field alpha-Omega? With or
     without meridional circulation? Babcock-Leighton?
     something else?

2. What is the mechanism responsible for saturation
    and observed cycle fluctuations: stochastic forcing?
    Backreaction by Lorentz force? Time delay modulation? 
    Combination of above and/or something else?

3. How do we « predict » sunspot number from a
    numerical model that provides the spatiotemporal
    evolution of a large-scale magnetic field?
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Cyclic modulation of meridional flow (1)
Time-latitude diagram of zonally-averaged surface latitudinal flow

Counterrotating high-latitude flow cells in descending phase of cycles

Surface meridional flow generally poleward from mid-latitudes to poles
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The large-scale magnetic fields (2)

Radius-latitude animation of zonally-averaged
 toroidal magnetic component

Cycles « begin » in bottom half of convection zone;

Field accumulates at core-envelope interface, in part via turbulent
pumping, reaching ~0.4T at peak of cycle;

Dynamo action also taking place in subsurface layers, shorter period.
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Magnetic cycles (4)
Polar cap magnetic flux (dotted lines), interface toroidal flux (solid lines)

Well-defined dipole moment, oscillating in phase with toroidal component
(Sun has pi/2 phase lag)

 Cycle (half-) period is fairly regular, here ~30 yr instead of the solar 11

Good hemispheric synchrony, despite strong cycle-to-cycle fluctuations


