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Why do we care about aerosols in the climate system?

on the transfer of solar and Earth
thermal radiation of suspended aerosols;

. Impact on cloud processes (and thus
on radiation and hydrological cycle);

Sink of many important chemical species.



Indirect aerosol effects (warm rain only)
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Ship tracks: spectacular
example of indirect
effects caused by ship
exhausts acting as CCN
(long-lasting, feedback
on cloud dynamics?)
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Why indirect aerosol effect are so uncertain and
difficult to quantify?

Because they are a problem
for current global climate models: parameterized
microphysics in parameterized clouds!



(courtesy of Bjorn Stevens)

Simulated year-to-year
variability of meridional
distribution of reflected
solar radiation from IPCC
model ensemble.

Annual variability of
observed reflected solar
radiation from satellite
(CERES): 4 years of data.




ISsues:

-Current observational techniques do not allow to
untangle relationship between aerosols and clouds
on spatial and temporal scales relevant to climate:

-Traditional general circulation models
misrepresent the impact of aerosols on climate



satellites observing aerosols
and clouds...
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If clouds correlate with aerosol, this does not imply that
aerosols are solely responsible for changing clouds...

satellites
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If clouds correlate with aerosol, this does not imply that
aerosols are solely responsible for changing clouds...

Clouds and aerosol can simply vary together (for
Instance, because of the large-scale advection patterns...).



If clouds correlate with aerosol, this does not imply that
aerosols are solely responsible for changing clouds...

Clouds and aerosol can simply vary together (for
Instance, because of the large-scale advection patterns...).

And - perhaps more importantly — these large-scale
advection patterns (“meteorology”) have by far more
significant impact on clouds...
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“Flood or Drought: How Do Aerosols Affect Precipitation?”

What is wrong with this picture?



single-cloud reasoning

cloud-ensemble reasoning

Arguably, only the cloud-ensemble reasoning is appropriate once
climate implications are considered. Another way to think about
the problem: (e.g., microphysics) versus
the . Only the latter includes all the
feedbacks and forcings in the system.



Convective-radiative quasi-equilibrium is the
simplest system that includes interactions
between clouds and thelr environment
(“system-dynamics approach™).
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Radiative-convective quasi-equilibrium
mimickin Blanetary energy budget
using a 2D cloud-resolving model
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Grabowski J. Climate 2006, Grabowski and Morrison J. Climate 2010 (submitted)



Numerical model:

Dynamics: 2D super-parameterization model
(Grabowski 2001) with simple bulk microphysics (warm-
rain plus ice; Grabowski 1998)

Radiation: NCAR’s Community Climate System Model
(CCSM) (Kiehl et al 1994) in the Independent Column
Approximation (ICA) mode

100 columns (Ax=2km) and 61 levels (stretched; 12
levels below 2 km; top at 24 km)

Grabowski J. Climate 2006



Simulations with the new double-moment bulk microphysics:

Warm-rain scheme of Morrison and Grabowski (JAS 2007,
2008a) predicts concentrations and mixing ratios of cloud water
and rain water; relatively sophisticated CCN activation scheme,
contrasting CCN spectra, and better
representation of the homogeneity of subgrid-scale mixing.

Ice scheme of Morrison and Grabowski (JAS 2008b) predicts
concentrations and two mixing ratios of ice particles to keep
track of mass grown by diffusion and by riming; heterogeneous
and homogeneous ice nucleation with the same IN
characteristics for pristine and polluted conditions.



Simulations with the new double-moment bulk microphysics:

Better spatial resolution (200 points with 1 km gridlength, 61
levels up to 18 km)

60-day long simulations starting from the sounding at the end of
the single-moment simulations of Grabowski (2006).
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GrabowsKki new
J. Climate 2006 simulations

mean cloud
fraction

Solid: polluted

Dashed: pristine

Horizontal bars: standard deviation of temporal evolution
(measure of statistical significance of the difference)



PRISTINE PRISTINE POLLUTED POLLUTED KT97
h el h el
Net TOA shortwave flux (W m?) 256 (3) 257 (3) 247 (4) 248 (5) 235
GO6 results 295 (12) 245 (6) 201 (10) 295 (9)
TOA albedo 0.25 (0.01) 0.25 (0.01)  0.28 (0.01) 0.27 (0.01)
GO6 results 0.34 (0.03) 0.28 (0.03) 041 (0.03) 0.3} (0.03)
OLR (Wm™?) 251 (4) 252 (4) 247 (8) 246 (12)
G06 results 242 (3) 243 (3) 240 (3) 249 (3)
Radiative cooling of troposphere (W m™) -94 (4) -94 (4) -93 (8) -91 (12)
G06 results -101 (4) -100 (5) -101 (4) -99 (4)
Solar flux absorbed at surface (W m—2) 202 (4) 204 (3) 193 (5) 194 (6)
GO6 results 163 (11) 184 (8) 141 (12) 164 (10)
Surface net longwave (Wm—2) 96 (2) 96 (2) 93 (3) 93 (3)
GO6 results 73 (5) 73 (6) 70 (5) 79 (5)
Surface sensible heat flux (W m2) 10 (1) 10 (1) 9 (1) 9 (1)
GO6 results 20 (2) 20 (1) 19 (1) 18 (2)
Surface latent heat flux (W m2) 84 (1) 84 (1) 82 (1) 81 (1)
GO6 results 73 (2) 73 (2) 75 (2) 7% (2)
Surface precipitation (Wm™?) 83 (19) 83 (21) 82 (20) 81 (20)
G06 results 69 (33) 70 (29) 72 (28) 70 (32)
Surface energy budget (W m—2) 13 (3) 15 (3) 9 (4) 11 (5)
G06 results -2.(7) 17 (5) -23 (9)




Interpretation (without going into details that make the
difference between GO06 and current study interesting):

1.Radiative cooling virtually the same in PRISTINE and
POLLUTED simulations...

2.Surface heat flux (latent plus sensible) has to be the same.
Bowen ratio practically does not change....

3.Surface precipitation has to stay the same. Apparently its
mean (ensemble-averaged) vertical distribution does not
change either because of feedbacks in the system...




How are these results relevant to the
Indirect effects In the climate system?



single-cloud reasoning cloud-ensemble reasoning




If such a picture Is correct, then the biggest challenge for
understanding the effects of aerosol on climate is to quantify
possibly significant local effects versus relatively
Insignificant global effects.

The key point is that for the local effects, the “meteorology”
(i.e., large-scale processes) are most likely by far more
Important. This is why separating aerosol effects from
“meteorology” is very difficult...

This points to the multiscale aspect of the problem...



dynamic response at wrong scales:

Climate models are good at
large-scale circulations...

...and they have to
parameterize cloud-scale
processes.




A simple heuristic argument:

Small-scale atmospheric dynamics is about hydrodynamic
Instabilities. Such instabilities typically are most active at the smallest
scales (e.g., KH and RT instabilities without viscosity).

So any impact of aerosols is first be felt and processed at small-scales.
Only what is left is available to affect large-scale circulations.

This Is not how traditional GCMs are working...

...unless we can design parameterizations that can response in the
right way, which is difficult: (parameterization)? problem.
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Cloud-Resolving Convection Parameterization (CRCP)
(Super-parameterization, SP)

Grabowski and Smolarkiewicz, Physica D 1999
Grabowski, JAS 2001;: Khairoutdinov and Randall GRL 2001;
Randall et al., BAMS 2003

The idea Is to represent subgrid scales of the 3D large-
scale model (horizontal resolution of 100s km) by
embedding periodic-domain 2D CRM (horizontal resolution
around 1 km) in each column of the large-scale model

Another (better?) way to think about CRCP: CRCP
Involves hundreds or thousands of 2D CRMs interacting in
a manner consistent with the large-scale dynamics



Original CRCP proposal




NSF Science and Technology Center was created in 2006...
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The effects of anthropogenic aerosols
as simulated by the SP-CAM
with two-moment microphysics
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Super-parameterized CAM: SP-CAM
Multiscale Modeling Framework (MMF)

A copy of a CRM (a.k.a.“super-parameterization™) is run in each
column of CAM GCM.

32-64 CRM columns x 4 km
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Bulk Microphysics Schemes in
System for Atmospheric Modeling - SAM CRM
used as super-parameterization in SP-CAM

Original One-Moment
(Khairoutdinov and Randall 2003)

Two-Moment

(Morrison et al. 2005)
Thanks to Peter Blossey for
implementing it in SAM

e 2 prognostic microphysics variables:
total non-precipitating and
precipitating water mixing ratios;

® Cloud liquid and ice water, rain,
graupel and snow are diagnosed as
f(T);

e Autoconversion to rain by simple
Kessler formula;

® Cloud drop effective radius is
prescribed

e No indirect aerosol effect is included.

e |0 prognostic microphysics variables;

* Prognostic mixing ratio and
concentration for 5 categories of
water;

® Autoconversion depends on water
content and concentration (KK 2000);

*Cloud Condensation nuclei (CCN)
spectrum is prescribed;
eCloud droplet effective radius is

computed;
e Indirect aerosol effects are included.
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Concluding comments:

The effect of clouds on the climate system is one of the most difficult
aspects of the climate change research. It involves multiscale
Interactions between dynamics (from global to small-scale turbulence),
cloud microphysics, radiative transfer, and surface processes.

Indirect impact of atmospheric aerosols (i.e., through modifications of
cloud and precipitation processes) iIs one of the least understood aspects
of the climate change. Estimates from traditional climate models are
uncertain because of the “(parameterization)?” problem (parameterized
microphysics in parameterized clouds).

Superparameterization approach as well as cloud-resolving general
circulation models (the latter still way to expensive for climate
simulations) provide valuable alternatives to advance the climate
science and are pursued in several climate research centers.
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