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© Model formulation



Model formulation
o
Dry compressible Euler equation

@ Dry Euler equations in conservative form:
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ot ox 9y 0z
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@ Prognostic variables are total density p, momentum pu, pv, pw, and
potential temperature times density pf. Pressure p is a diagnostic variable
from the equation of state

P = po(Ra(p0)/po
with K = R4/cpa and Ry gas constant of dry air and ¢, specific heat of

dry air at constant pressure.
@ Pressure gradient Vp = cpqpfV 7 with the Exner pressure 7

)1/(17x)



Model formulation
L]
Anelastic approximation

@ Anelastic approximation in conservative form
@ Replace p by po = po(2)
@ Cancel time derivative with respect to p
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@ Prognostic variables are momentum pou, pov, pow, and potential
temperature times background density pof. Pressure 7t acts now as a
Lagrange multiplier.



Model formulation
L]
Pseudo-incompressible approximation

@ Pseudo-incompressible approximation in conservative form
@ Replace p by p = ”°T?°.
o Cancel time derivative with respect to pf
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@ Prognostic variables are density p, momentum pu, pv, pw. Pressure 7 acts
now as a Lagrange multiplier.



Model formulation
o
Pseudo-incompressible approximation

@ Last equation can be rewritten as
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@ Last equation is nonlinear in momentum and density

@ Equation looks like a variable density flow
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© Rosenbrock W methods
@ Rosenbrock W methods
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Rosenbrock W methods
[ ]
Rosenbrock W methods

@ Method of lines approach, spatial approximation leads to the time

integration
o
y=F(y)
(]
i—1
Yi =yt ) ajk
j=1
(I —wAtW)k = AtF(Y)+ > vk, i=1...s
j=1
Yo = yot Y biki
i=1

where s is the number of stages, o, aj, yijj, bi parameters
e Matrix W = 9F(y»)/0y
o Convergence order does not depend on W

o If W is identical zero a explicit Runge-Kutta is obtained



Rosenbrock W methods
[ Jele}
Rosenbrock W methods for differential algebraic equations (DAE)

°y= (Ll, p)T
v = F(up)
0 = G(v)

@ DAE is of index two if matrix %g—g is regular



Rosenbrock W methods
oeo
Rosenbrock W methods for differential algebraic equations (DAE)

@ To derive an Rosenbrock method for the DAE consider instead

u = F(up)
. 1
p = EG(U)
(]
i—1
U = u+ Za,-jkj
j=1
i—1
Pi = pn+t+ Zaulj
| — ’yoAt,, Wi 7’70Ath12 k; 7 AtnF(U,, P) + Z 1 ’YU .
(—%’YoAthﬂ / ) (/,‘) - 1AtnG(U)+ZJ vl ) =

Unt1 = Un+ Z bik;

pn + Z bil;
-1

where Wiy & OF (un, pn)/0u, Wia = OF (un, pn)/0p, Wa1 = 0G(un)/0u

Pn+1



Rosenbrock W methods
[e]e] J
Rosenbrock W methods for differential algebraic equations (DAE)

o Multiplying by ¢ and ¢ — 0

o
i—1
U = u+ Z ajjkj
=1
i—1
Pi = pn+t+ Z ajjl;
I —vAt,Win —vAt, W2\ (ki _ A1-Ln (Ui, Pi) + ZJ 1 Yirki i=
—’yoAtn Wh1 0 I; AtnG(U,) ’
Upy1 = Un+ Z bik;
Pn+1 - Pn + Z bili

@ With a suitable approximation to W in the compressible case almost same
linear algebra
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Rosenbrock W methods for the flow equations
°

Compressible case

@ To reduce further computational cost the following approximation to the
Jacobian are applied

@ The Jacobian with respect to advection is computed for a first order
approximation in space

@ For a generic variable x and advection in x-direction
O pu) e
ox
the differentiation with respect to p is ignored

o (I —yoAtW) is replaced by (I — v AtW7T) (I — voAtWs) with
W = Wr + Ws

o Wr is an approximation to the transport part, Ws is an approximation to
the sound part

o Further simplifications are possible for special applications



Rosenbrock W methods for the flow equations
L]
General structure of the W matrix with respect to the sound part

@ Sound part means differentiation of the pressure in the momentum
equations with respect to the thermodynamic variables, differentiation of
the right hand side of the thermodynamic variables with respect to

momentum
)
D, D,1GradD; ... D,GradDs
WS = Div T1u T1 . 0
DivTs, 0 0 Ts

where D and T are diagonal matrices
@ In the anelastic cases T, = 0

@ Choice of the diagonal matrices for the different formulations

D1 D, Ty
C 1 Op/0pb 0
A Po 1 1
P | pobho 1 (pobo)/p




Rosenbrock W methods for the flow equations
L]
Our favored Rosenbrock-W-method RosRK3

Underlying explicit Runge-Kutta method is the RK3 method
0
1/3 | 1/3
1/2 0 1/2
1 0 0 1
Used in the codes WRF, NICAM and COSMO

e =1

o Coefficients a and b
0.33333333333333331

0.20370370370370369  0.50000000000000000
-0.62962962962962965 2.7500000000000000  1.00000000000000000

o Coefficients y

-0.40740740740740738
0.62962962962962965 -2.7500000000000000

@ Other Rosenbrock-W-methods are available (c.f. Rang and Angermann)



Rosenbrock W methods for the flow equations
o
Translating bubble

@ Translating bubble, left RosRK3, right Ro3PW (Rang, Angermann)
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Computational experiments
.

Model ASAM

Method is implemented in the code ASAM (All Scale Atmospheric Model)
Cut cell approach

o Cartesian or spherical grid

Block structured for AMR and parallelization

Different time integration methods

@ asam.tropos.de



Computational experiments
°

The dry bubble test case

@ Domain 20.000 m by 10.000 m
o Ax = Az =125m, At =5s

o Initial conditions for the unperturbed environment (calm, hydrostatic,
neutrally stable)

@ Perturbation

if L>1.
AD— 0 . | > 1.0,
2cos*(mw/2L) if L<1.0

where

(i

x? z?

with x. = 10000m, z. = 2000m, and x, = z, = 2000m

@ Simulation time 1000 s



Computational experiments
o
Perturbation potential temperature

@ Perturbation potential temperature for the anelastic case

I: - I:

@ Perturbation potential temperature for the pseudo incompressible case




Computational experiments
[ Je]
Vertical velocity

o Vertical velocity for the anelastic case

Ghld o Gy D
E i ok

@ Vertical velocity for the pseudo incompressible case

L} Lk LSO



Computational experiments
oe
Vertical velocity

@ Comparison of minimal and maximal vertical velocity
Compressible
300 [ 13.700 [ -7.922
Anelastic
290 | 13.725 | -8.046
300 | 13.733 | -7.946
310 | 13.596 | -7.774
Pseudo
290 | 13.580 | -7.983
300 | 13.684 | -7.948
310 | 13.761 | -7.864




Computational experiments
L]
The Bannon test case

@ Domain 400000 m by 30.000 m
o Ax = Az =200m, At = 5s

o Initial conditions for the unperturbed environment (calm, hydrostatic,
nonisothermal)

@ Until 11000 m a lapse rate of 6.5Km™?, above isothermal

L 2 it L>10,
4cos®(m/2L) if L<1.0

@ Perturbation

where

(e

X7 Z7
with x. = 200000m, z. = 3500m, x, = 10000m, and z, = 2500m

@ Simulation time 1000 s



Computational experiments

Perturbatio

n potential temperature

@ Initial perturbations of potential temperature compressible left and
anelastic right
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Perturbatio

n potential temperature

@ Potential temperature perturbation after 1 min compressible left and
anelastic right
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nal experiments

L]
Perturbatio

n potential temperature

o Potential temperature perturbation after 10 min compressible left and
anelastic right
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Computational experiments

L]
Vertical velocity

@ Vertical velocityafter 1 min compressible left and anelastic right
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Computational experiments

o
Vertical velocity

@ Vertical velocity after 10 min compressible left and anelastic right
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@ Further work



Need we anelastic approximations

Conclusions
o

Need we anelastic approximations

How to choose the background profiles
Sound waves can be eliminated by suitable time integration schemes

Same numerical schemes for sound proofed approximations and full
equations

The linear solver for the for the sound part of the Jacobian is the crucial
bottleneck

Pseudo incompressible numerics are unstable for larger time steps



Conclusions
o

Further work

@ Looking for more optimal methods
@ Partial linearly implicit Peer and Rosenbrock methods
°

Stability analysis for approximated Jacobians

Dispersion analysis of the numerical schemes for linearized problems

Adapted pressure solvers for different grid configurations
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