| Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|
|                   |                      |                                             |                           |             |
|                   |                      |                                             |                           |             |

# Unified linear time integration methods for compressible and anelastic models

Oswald Knoth, Stefan Jebens, Michael Jähn

EULAG Workshop, Sopot

13.09.2010









| Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|
|                   |                      |                                             |                           |             |
|                   |                      |                                             |                           |             |

# Introduction

2 Model formulation

#### Rosenbrock W methods

- Rosenbrock W methods
- Rosenbrock W methods for differential algebraic equations (DAE)

#### A Rosenbrock W methods for the flow equations

- Compressible case
- General structure of the W matrix with respect to the sound part

• Our favored Rosenbrock-W-method RosRK3

#### Computational experiments

- Model ASAM
- The dry bubble test case
- The Bannon test case

#### 6 Conclusions

- Need we anelastic approximations
- Eurther work

| Introduction | Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|--------------|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|
|              | 0000              | 0000                 | 0000                                        | 0000000000                | 00          |
|              |                   |                      |                                             |                           |             |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Motivation
- Different formulations of ASAM
- Rosenbrock-W-methods
- Rosenbrock-W-methods for index-2 problems
- Numerical examples
- Discussion

| Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|
| 0000              | 0000                 | 0000                                        | 0000000000                | 00          |
|                   |                      |                                             |                           |             |

# Introduction

# 2 Model formulation

#### Rosenbrock W method

- Rosenbrock W methods
- Rosenbrock W methods for differential algebraic equations (DAE)

#### A Rosenbrock W methods for the flow equations

- Compressible case
- General structure of the W matrix with respect to the sound part

• Our favored Rosenbrock-W-method RosRK3

#### 5 Computational experiments

- Model ASAM
- The dry bubble test case
- The Bannon test case

#### 6 Conclusions

- Need we anelastic approximations
- Further work

|              | Model formulation   | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|--------------|---------------------|----------------------|---------------------------------------------|---------------------------|-------------|
|              | 0000                |                      |                                             |                           |             |
| Dry compress | ible Euler equation |                      |                                             |                           |             |

• Dry Euler equations in conservative form:

$$\begin{aligned} \frac{\partial \rho}{\partial t} &= -\frac{\partial \rho u}{\partial x} - \frac{\partial \rho v}{\partial y} - \frac{\partial \rho w}{\partial z} \\ \frac{\partial \rho u}{\partial t} &= -\frac{\partial \rho u u}{\partial x} - \frac{\partial \rho v u}{\partial y} - \frac{\partial \rho w u}{\partial z} - \frac{\partial p}{\partial x} \\ \frac{\partial \rho v}{\partial t} &= -\frac{\partial \rho u v}{\partial x} - \frac{\partial \rho v v}{\partial y} - \frac{\partial \rho w v}{\partial z} - \frac{\partial p}{\partial x} \\ \frac{\partial \rho w}{\partial t} &= -\frac{\partial \rho u w}{\partial x} - \frac{\partial \rho v w}{\partial y} - \frac{\partial \rho w w}{\partial z} - \frac{\partial p}{\partial z} - \rho g \\ \frac{\partial \rho \theta}{\partial t} &= -\frac{\partial \rho u \theta}{\partial x} - \frac{\partial \rho v \theta}{\partial y} - \frac{\partial \rho w \theta}{\partial z} + Q \end{aligned}$$

• Prognostic variables are total density  $\rho$ , momentum  $\rho u$ ,  $\rho v$ ,  $\rho w$ , and potential temperature times density  $\rho \theta$ . Pressure p is a diagnostic variable from the equation of state

$$p = p_0 (R_d(\rho\theta)/p_0)^{1/(1-\kappa)}$$

with  $\kappa = R_d/c_{pd}$  and  $R_d$  gas constant of dry air and  $c_{pd}$  specific heat of dry air at constant pressure.

-

• Pressure gradient  $\nabla p = c_{pd} \rho \theta \nabla \pi$  with the Exner pressure  $\pi$ 

|                | Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|----------------|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|
|                | 0000              |                      |                                             |                           |             |
| Anelastic appr | roximation        |                      |                                             |                           |             |

- Anelastic approximation in conservative form
- Replace  $\rho$  by  $\rho_0 = \rho_0(z)$
- Cancel time derivative with respect to  $\rho$

#### ۲

$$0 = -\frac{\partial \rho_0 u}{\partial x} - \frac{\partial \rho_0 v}{\partial y} - \frac{\partial \rho_0 w}{\partial z}$$
$$\frac{\partial \rho_0 u}{\partial t} = -\frac{\partial \rho_0 u u}{\partial x} - \frac{\partial \rho_0 v u}{\partial y} - \frac{\partial \rho_0 w u}{\partial z} - \rho_0 \frac{\partial \hat{\pi}}{\partial x}$$
$$\frac{\partial \rho_0 v}{\partial t} = -\frac{\partial \rho_0 u v}{\partial x} - \frac{\partial \rho_0 v v}{\partial y} - \frac{\partial \rho_0 w v}{\partial z} - \rho_0 \frac{\partial \hat{\pi}}{\partial x}$$
$$\frac{\partial \rho_0 w}{\partial t} = -\frac{\partial \rho_0 u w}{\partial x} - \frac{\partial \rho_0 v w}{\partial y} - \frac{\partial \rho_0 w w}{\partial z} - \rho_0 \frac{\partial \hat{\pi}}{\partial z} + \rho_0 \frac{\theta - \bar{\theta}}{\bar{\theta}}$$
$$\frac{\partial \rho_0 \theta}{\partial t} = -\frac{\partial \rho_0 u \theta}{\partial x} - \frac{\partial \rho_0 v \theta}{\partial y} - \frac{\partial \rho_0 w \theta}{\partial z}$$

 Prognostic variables are momentum ρ<sub>0</sub>u, ρ<sub>0</sub>v, ρ<sub>0</sub>w, and potential temperature times background density ρ<sub>0</sub>θ. Pressure π̂ acts now as a Lagrange multiplier.

|                                     | Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |  |  |  |
|-------------------------------------|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|--|--|--|
|                                     | 0000              |                      |                                             |                           |             |  |  |  |
| Pseudo-incompressible approximation |                   |                      |                                             |                           |             |  |  |  |

- Pseudo-incompressible approximation in conservative form
- Replace  $\rho$  by  $\rho = \frac{\rho_0 \theta_0}{\theta}$ .
- $\bullet\,$  Cancel time derivative with respect to  $\rho\theta$
- ۲

$$\begin{split} \frac{\partial \rho}{\partial t} &= -\frac{\partial \rho u}{\partial x} - \frac{\partial \rho v}{\partial y} - \frac{\partial \rho w}{\partial z} \\ \frac{\partial \rho u}{\partial t} &= -\frac{\partial \rho u u}{\partial x} - \frac{\partial \rho v u}{\partial y} - \frac{\partial \rho w u}{\partial z} - \rho_0 \theta_0 \frac{\partial \pi}{\partial x} \\ \frac{\partial \rho v}{\partial t} &= -\frac{\partial \rho u v}{\partial x} - \frac{\partial \rho v v}{\partial y} - \frac{\partial \rho w v}{\partial z} - \rho_0 \theta_0 \frac{\partial \pi}{\partial x} \\ \frac{\partial \rho w}{\partial t} &= -\frac{\partial \rho u w}{\partial x} - \frac{\partial \rho v w}{\partial y} - \frac{\partial \rho w w}{\partial z} - \rho_0 \theta_0 \frac{\partial \pi}{\partial z} - \rho g \\ 0 &= -\frac{\partial \rho_0 u \theta_0}{\partial x} - \frac{\partial \rho_0 v \theta_0}{\partial y} - \frac{\partial \rho_0 w \theta_0}{\partial z} + Q \end{split}$$

 Prognostic variables are density ρ, momentum ρu, ρv, ρw. Pressure π acts now as a Lagrange multiplier.

(ロ)、(型)、(E)、(E)、 E) の(の)

|              | Model formulation       | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|--------------|-------------------------|----------------------|---------------------------------------------|---------------------------|-------------|
|              | 0000                    |                      |                                             |                           |             |
| Pseudo-incom | pressible approximation | n                    |                                             |                           |             |

• Last equation can be rewritten as

$$\begin{aligned} \frac{\partial \rho}{\partial t} &= -\frac{\partial \rho u}{\partial x} - \frac{\partial \rho v}{\partial y} - \frac{\partial \rho w}{\partial z} \\ \frac{\partial \rho u}{\partial t} &= -\frac{\partial \rho u u}{\partial x} - \frac{\partial \rho v u}{\partial y} - \frac{\partial \rho w u}{\partial z} - \rho_0 \theta_0 \frac{\partial \pi}{\partial x} \\ \frac{\partial \rho v}{\partial t} &= -\frac{\partial \rho u v}{\partial x} - \frac{\partial \rho v v}{\partial y} - \frac{\partial \rho w v}{\partial z} - \rho_0 \theta_0 \frac{\partial \pi}{\partial x} \\ \frac{\partial \rho w}{\partial t} &= -\frac{\partial \rho u w}{\partial x} - \frac{\partial \rho v w}{\partial y} - \frac{\partial \rho w w}{\partial z} - \rho_0 \theta_0 \frac{\partial \pi}{\partial z} - \rho g \\ 0 &= -\frac{\partial \rho u \frac{\rho_0 \theta_0}{\rho}}{\partial x} - \frac{\partial \rho v \frac{\rho_0 \theta_0}{\rho}}{\partial y} - \frac{\partial \rho w \frac{\rho_0 \theta_0}{\rho}}{\partial z} + Q \end{aligned}$$

- Last equation is nonlinear in momentum and density
- Equation looks like a variable density flow

| Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|
|                   |                      |                                             |                           |             |
|                   |                      |                                             |                           |             |

# Introduction



### 3 Rosenbrock W methods

- Rosenbrock W methods
- Rosenbrock W methods for differential algebraic equations (DAE)

#### 4 Rosenbrock W methods for the flow equations

- Compressible case
- General structure of the W matrix with respect to the sound part

Our favored Rosenbrock-W-method RosRK3

#### 6 Computational experiments

- Model ASAM
- The dry bubble test case
- The Bannon test case

#### 6 Conclusions

- Need we anelastic approximations
- Further work

|              | Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|--------------|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|
|              |                   | 0000                 |                                             |                           |             |
| Rosenbrock W | / methods         |                      |                                             |                           |             |

Method of lines approach, spatial approximation leads to the time integration

۰

$$\dot{y} = F(y)$$

$$Y_i = y_n + \sum_{j=1}^{i-1} a_{ij} k_j$$

$$(I - \gamma_0 \Delta t_n W)k_i = \Delta t_n F(Y_i) + \sum_{j=1}^i \gamma_{ij} k_j, \quad i = 1, \dots, s$$
$$Y_{n+1} = y_n + \sum_{i=1}^s b_i k_i$$

where s is the number of stages,  $\gamma_0$ ,  $a_{ij}$ ,  $\gamma_{ij}$ ,  $b_i$  parameters

- Matrix  $W \approx \partial F(y_n) / \partial y$
- Convergence order does not depend on W
- If W is identical zero a explicit Runge-Kutta is obtained

|              | Model formulation                                               | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |  |  |  |  |
|--------------|-----------------------------------------------------------------|----------------------|---------------------------------------------|---------------------------|-------------|--|--|--|--|
|              |                                                                 | 0000                 |                                             |                           |             |  |  |  |  |
| Rosenbrock W | Rosenbrock W methods for differential algebraic equations (DAE) |                      |                                             |                           |             |  |  |  |  |

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• 
$$y = (u, p)^T$$
  
•  
 $\dot{u} = F(u, p)$   
 $0 = G(u)$ 

• DAE is of index two if matrix  $\frac{\partial G}{\partial u} \frac{\partial F}{\partial p}$  is regular

|                                                                 | Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |  |  |  |
|-----------------------------------------------------------------|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|--|--|--|
|                                                                 |                   | 0000                 |                                             |                           |             |  |  |  |
| Rosenbrock W methods for differential algebraic equations (DAE) |                   |                      |                                             |                           |             |  |  |  |

• To derive an Rosenbrock method for the DAE consider instead

۲

$$\dot{u} = F(u, p)$$
  
 $\dot{p} = \frac{1}{\epsilon}G(u)$ 

 $U_i = u_n + \sum_{i=1}^{i-1} a_{ij} k_j$  $P_i = p_n + \sum_{i=1}^{i-1} a_{ij} l_j$  $\begin{pmatrix} I - \gamma_0 \Delta t_n W_{11} & -\gamma_0 \Delta t_n W_{12} \\ -\frac{1}{\epsilon} \gamma_0 \Delta t_n W_{21} & I \end{pmatrix} \begin{pmatrix} k_i \\ l_i \end{pmatrix} = \begin{pmatrix} \Delta t_n F(U_i, P_i) + \sum_{j=1}^{i-1} \gamma_{ij} k_j \\ \frac{1}{\epsilon} \Delta t_n G(U_i) + \sum_{i=1}^{i-1} \gamma_{ii} l_i \end{pmatrix}, \quad i =$  $u_{n+1} = u_n + \sum_{i=1}^{n} b_i k_i$  $p_{n+1} = p_n + \sum b_i l_i$ 

where  $W_{11} \approx \partial F(u_n, p_n) / \partial u$ ,  $W_{12} = \partial F(u_n, p_n) / \partial p$ ,  $W_{21} = \partial G(u_n) / \partial u$ 

|              | Model formulation                                               | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |  |  |  |
|--------------|-----------------------------------------------------------------|----------------------|---------------------------------------------|---------------------------|-------------|--|--|--|
|              |                                                                 | 0000                 |                                             |                           |             |  |  |  |
| Rosenbrock W | Rosenbrock W methods for differential algebraic equations (DAE) |                      |                                             |                           |             |  |  |  |

• Multiplying by  $\epsilon$  and  $\epsilon \rightarrow 0$ 

۲

$$U_{i} = u_{n} + \sum_{j=1}^{i-1} a_{ij}k_{j}$$

$$P_{i} = p_{n} + \sum_{j=1}^{i-1} a_{ij}l_{j}$$

$$\begin{pmatrix} I - \gamma_{0}\Delta t_{n}W_{11} & -\gamma_{0}\Delta t_{n}W_{12} \\ -\gamma_{0}\Delta t_{n}W_{21} & 0 \end{pmatrix} \begin{pmatrix} k_{i} \\ l_{i} \end{pmatrix} = \begin{pmatrix} \Delta t_{n}F(U_{i}, P_{i}) + \sum_{j=1}^{i-1}\gamma_{ij}k_{j} \\ \Delta t_{n}G(U_{i}) \end{pmatrix}, \quad i =$$

$$u_{n+1} = u_{n} + \sum_{i=1}^{s} b_{i}k_{i}$$

$$p_{n+1} = p_{n} + \sum_{i=1}^{s} b_{i}l_{i}$$

• With a suitable approximation to W in the compressible case almost same linear algebra

<□ > < @ > < E > < E > E のQ @

| Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|
| 0000              | 0000                 | 0000                                        | 0000000000                | 00          |
|                   |                      |                                             |                           |             |

# Introduction

# 2 Model formulation

#### 3 Rosenbrock W methods

- Rosenbrock W methods
- Rosenbrock W methods for differential algebraic equations (DAE)

#### 4 Rosenbrock W methods for the flow equations

- Compressible case
- General structure of the W matrix with respect to the sound part

Our favored Rosenbrock-W-method RosRK3

#### Computational experiments

- Model ASAM
- The dry bubble test case
- The Bannon test case

#### 6 Conclusions

- Need we anelastic approximations
- Further work

|              | Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|--------------|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|
|              |                   |                      | 0000                                        |                           |             |
| Compressible | case              |                      |                                             |                           |             |

- To reduce further computational cost the following approximation to the Jacobian are applied
- The Jacobian with respect to advection is computed for a first order approximation in space
- For a generic variable  $\chi$  and advection in x-direction

$$\frac{\partial(\rho u)\frac{\rho\chi}{\rho}}{\partial x}$$

the differentiation with respect to  $\rho$  is ignored

- $(I \gamma_0 \Delta t W)$  is replaced by  $(I \gamma_0 \Delta t W_T)(I \gamma_0 \Delta t W_S)$  with  $W = W_T + W_S$
- $W_T$  is an approximation to the transport part,  $W_S$  is an approximation to the sound part

• Further simplifications are possible for special applications

|                | Model formulation                                                | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |  |  |  |  |
|----------------|------------------------------------------------------------------|----------------------|---------------------------------------------|---------------------------|-------------|--|--|--|--|
|                |                                                                  |                      | 0000                                        |                           |             |  |  |  |  |
| General struct | General structure of the W matrix with respect to the sound part |                      |                                             |                           |             |  |  |  |  |

 Sound part means differentiation of the pressure in the momentum equations with respect to the thermodynamic variables, differentiation of the right hand side of the thermodynamic variables with respect to momentum

$$W_{S} = \begin{pmatrix} D_{u} & D_{u1} \operatorname{Grad} D_{1} & \dots & D_{us} \operatorname{Grad} D_{s} \\ \operatorname{Div} T_{1u} & T_{1} & \dots & 0 \\ \operatorname{Div} T_{su} & 0 & 0 & T_{s} \end{pmatrix}$$

where D and T are diagonal matrices

• In the anelastic cases  $T_i = 0$ 

• Choice of the diagonal matrices for the different formulations

|   | $D_{u1}$       | $D_1$                                   | $T_{1u}$             |
|---|----------------|-----------------------------------------|----------------------|
| C | 1              | $\partial \pmb{p} / \partial  ho 	heta$ | $\theta$             |
| A | $ ho_0$        | 1                                       | 1                    |
| Ρ | $ ho_0	heta_0$ | 1                                       | $( ho_0	heta_0)/ ho$ |

|               | Model formulation   | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|---------------|---------------------|----------------------|---------------------------------------------|---------------------------|-------------|
|               |                     |                      | 0000                                        |                           |             |
| Our favored R | losenbrock-W-method | RosRK3               |                                             |                           |             |

- Underlying explicit Runge-Kutta method is the RK3 method
  - $\begin{array}{c|c|c} 0 \\ 1/3 \\ 1/2 \\ 1/2 \\ 0 \\ 1/2 \\ 0 \\ 0 \\ 1 \end{array}$
- Used in the codes WRF, NICAM and COSMO
- $\gamma_0 = 1$
- Coefficients a and b

   0.3333333333333333
   0.20370370370370369
   0.500000000000000
   -0.62962962962965965
   2.75000000000000
   1.0000000000000000
- Coefficients  $\gamma$

-0.40740740740740738 0.62962962962962965 -2.750000000000000

• Other Rosenbrock-W-methods are available (c.f. Rang and Angermann)

|                | Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|----------------|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|
|                |                   |                      | 0000                                        |                           |             |
| Translating bu | bble              |                      |                                             |                           |             |

• Translating bubble, left RosRK3, right Ro3PW (Rang, Angermann)



・ロト ・聞ト ・ヨト ・ヨト

æ

| Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|
|                   |                      |                                             |                           |             |
|                   |                      |                                             |                           |             |

# Introduction

# 2 Model formulation

#### 3 Rosenbrock W methods

- Rosenbrock W methods
- Rosenbrock W methods for differential algebraic equations (DAE)

#### A Rosenbrock W methods for the flow equations

- Compressible case
- General structure of the W matrix with respect to the sound part

Our favored Rosenbrock-W-method RosRK3

#### 5 Computational experiments

- Model ASAM
- The dry bubble test case
- The Bannon test case

#### 6 Conclusions

- Need we anelastic approximations
- Further work

|            | Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|------------|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|
|            |                   |                      |                                             | 0000000000                |             |
| Model ASAM |                   |                      |                                             |                           |             |

• Method is implemented in the code ASAM (All Scale Atmospheric Model)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Cut cell approach
- Cartesian or spherical grid
- Block structured for AMR and parallelization
- Different time integration methods
- asam.tropos.de

|               | Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|---------------|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|
|               |                   |                      |                                             | 000000000                 |             |
| The dry bubbl | e test case       |                      |                                             |                           |             |
|               |                   |                      |                                             |                           |             |

- Domain 20.000 m by 10.000 m
- $\Delta x = \Delta z = 125$ m,  $\Delta t = 5$ s
- Initial conditions for the unperturbed environment (calm, hydrostatic, neutrally stable)
- Perturbation

$$\Delta heta = egin{cases} 0 & ext{if} \quad L > 1.0, \ 2\cos^2(\pi/2L) & ext{if} \quad L \leq 1.0 \end{cases}$$

where

$$L = \sqrt{\frac{(x - x_c)^2}{x_r^2} + \frac{(z - z_c)^2}{z_r^2}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

with  $x_c = 10000$ m,  $z_c = 2000$ m, and  $x_r = z_r = 2000$ m

• Simulation time 1000 s

|                | Model formulation    | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|----------------|----------------------|----------------------|---------------------------------------------|---------------------------|-------------|
|                |                      |                      |                                             | 0000000000                |             |
| Perturbation p | otential temperature |                      |                                             |                           |             |

#### • Perturbation potential temperature for the anelastic case



• Perturbation potential temperature for the pseudo incompressible case



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

|                 | Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|-----------------|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|
|                 |                   |                      |                                             | 0000000000                |             |
| Vertical veloci | ty                |                      |                                             |                           |             |

## • Vertical velocity for the anelastic case



• Vertical velocity for the pseudo incompressible case



・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

|                   | Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |  |  |
|-------------------|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|--|--|
|                   |                   |                      |                                             | 0000000000                |             |  |  |
| Vertical velocity |                   |                      |                                             |                           |             |  |  |

• Comparison of minimal and maximal vertical velocity

| Compressible |            |        |  |  |  |  |
|--------------|------------|--------|--|--|--|--|
| 300          | 13.700     | -7.922 |  |  |  |  |
|              | Anelastic  |        |  |  |  |  |
| 290          | 13.725     | -8.046 |  |  |  |  |
| 300          | 300 13.733 |        |  |  |  |  |
| 310          | 13.596     | -7.774 |  |  |  |  |
|              | Pseudo     |        |  |  |  |  |
| 290          | 13.580     | -7.983 |  |  |  |  |
| 300          | 13.684     | -7.948 |  |  |  |  |
| 310          | 13.761     | -7.864 |  |  |  |  |

|                      | Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |  |  |
|----------------------|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|--|--|
|                      |                   |                      |                                             | 0000000000                |             |  |  |
| The Bannon test case |                   |                      |                                             |                           |             |  |  |
|                      |                   |                      |                                             |                           |             |  |  |

- Domain 400000 m by 30.000 m
- $\Delta x = \Delta z = 200$ m,  $\Delta t = 5$ s
- Initial conditions for the unperturbed environment (calm, hydrostatic, nonisothermal)
- Until 11000 m a lapse rate of 6.5Km<sup>-1</sup>, above isothermal
- Perturbation

$$\Delta heta = egin{cases} 0 & ext{if} \quad L > 1.0, \ 4\cos^2(\pi/2L) & ext{if} \quad L \leq 1.0 \end{cases}$$

where

$$L = \sqrt{\frac{(x - x_c)^2}{x_r^2} + \frac{(z - z_c)^2}{z_r^2}}$$

with  $x_c = 200000$ m,  $z_c = 3500$ m,  $x_r = 10000$ m, and  $z_r = 2500$ m • Simulation time 1000 s

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

|                                    | Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |  |  |
|------------------------------------|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|--|--|
|                                    | 0000              | 0000                 | 0000                                        | 00000000000               | 00          |  |  |
| Perturbation potential temperature |                   |                      |                                             |                           |             |  |  |

• Initial perturbations of potential temperature compressible left and anelastic right



|                                    | Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |  |  |
|------------------------------------|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|--|--|
|                                    |                   |                      |                                             | 00000000000               |             |  |  |
| Perturbation potential temperature |                   |                      |                                             |                           |             |  |  |

• Potential temperature perturbation after 1 min compressible left and anelastic right



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

|                                    | Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |  |
|------------------------------------|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|--|
|                                    |                   |                      |                                             | 00000000000               |             |  |
| Perturbation potential temperature |                   |                      |                                             |                           |             |  |

• Potential temperature perturbation after 10 min compressible left and anelastic right



|                 | Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|-----------------|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|
|                 |                   |                      |                                             | 00000000000               |             |
| Vertical veloci | ty                |                      |                                             |                           |             |

• Vertical velocityafter 1 min compressible left and anelastic right



|                 | Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|-----------------|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|
|                 |                   |                      |                                             | 0000000000                |             |
| Vertical veloci | ty                |                      |                                             |                           |             |

• Vertical velocity after 10 min compressible left and anelastic right



| Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|
| 0000              | 0000                 | 0000                                        | 0000000000                | 00          |
|                   |                      |                                             |                           |             |

# Introduction

# 2 Model formulation

#### 3 Rosenbrock W methods

- Rosenbrock W methods
- Rosenbrock W methods for differential algebraic equations (DAE)

#### A Rosenbrock W methods for the flow equations

- Compressible case
- General structure of the W matrix with respect to the sound part

Our favored Rosenbrock-W-method RosRK3

#### 5 Computational experiments

- Model ASAM
- The dry bubble test case
- The Bannon test case

### 6 Conclusions

- Need we anelastic approximations
- Further work

|                                  | Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |  |
|----------------------------------|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|--|
|                                  |                   |                      |                                             |                           | •0          |  |
| Need we anelastic approximations |                   |                      |                                             |                           |             |  |

Need we anelastic approximations

- How to choose the background profiles
- Sound waves can be eliminated by suitable time integration schemes
- Same numerical schemes for sound proofed approximations and full equations
- The linear solver for the for the sound part of the Jacobian is the crucial bottleneck

• Pseudo incompressible numerics are unstable for larger time steps

|              | Model formulation | Rosenbrock W methods | Rosenbrock W methods for the flow equations | Computational experiments | Conclusions |
|--------------|-------------------|----------------------|---------------------------------------------|---------------------------|-------------|
|              |                   |                      |                                             |                           | 00          |
| Further work |                   |                      |                                             |                           |             |

- Looking for more optimal methods
- Partial linearly implicit Peer and Rosenbrock methods
- Stability analysis for approximated Jacobians
- Dispersion analysis of the numerical schemes for linearized problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

• Adapted pressure solvers for different grid configurations