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Dry compressible Euler equation

Dry Euler equations in conservative form:
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Prognostic variables are total density ρ, momentum ρu, ρv , ρw , and
potential temperature times density ρθ. Pressure p is a diagnostic variable
from the equation of state

p = p0(Rd(ρθ)/p0)1/(1−κ)

with κ = Rd/cpd and Rd gas constant of dry air and cpd specific heat of
dry air at constant pressure.
Pressure gradient ∇p = cpdρθ∇π with the Exner pressure π
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Anelastic approximation

Anelastic approximation in conservative form

Replace ρ by ρ0 = ρ0(z)

Cancel time derivative with respect to ρ

0 = −∂ρ0u
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Prognostic variables are momentum ρ0u, ρ0v , ρ0w , and potential
temperature times background density ρ0θ. Pressure π̂ acts now as a
Lagrange multiplier.
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Pseudo-incompressible approximation

Pseudo-incompressible approximation in conservative form

Replace ρ by ρ = ρ0θ0
θ

.

Cancel time derivative with respect to ρθ
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Prognostic variables are density ρ, momentum ρu, ρv , ρw . Pressure π acts
now as a Lagrange multiplier.
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Pseudo-incompressible approximation

Last equation can be rewritten as
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Last equation is nonlinear in momentum and density

Equation looks like a variable density flow
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Rosenbrock W methods

Method of lines approach, spatial approximation leads to the time
integration

ẏ = F (y)

Yi = yn +
i−1X
j=1

aijkj

(I − γ0∆tnW )ki = ∆tnF (Yi ) +
iX

j=1

γijkj , i = 1, . . . , s

Yn+1 = yn +
sX

i=1

biki

where s is the number of stages, γ0, aij , γij , bi parameters

Matrix W ≈ ∂F (yn)/∂y

Convergence order does not depend on W

If W is identical zero a explicit Runge-Kutta is obtained
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Rosenbrock W methods for differential algebraic equations (DAE)

y = (u, p)T

u̇ = F (u, p)

0 = G(u)

DAE is of index two if matrix ∂G
∂u

∂F
∂p

is regular
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Rosenbrock W methods for differential algebraic equations (DAE)

To derive an Rosenbrock method for the DAE consider instead

u̇ = F (u, p)

ṗ =
1

ε
G(u)

Ui = un +
i−1X
j=1

aijkj

Pi = pn +
i−1X
j=1

aij lj

„
I − γ0∆tnW11 −γ0∆tnW12

− 1
ε
γ0∆tnW21 I

«„
ki

li

«
=

 
∆tnF (Ui ,Pi ) +

Pi−1
j=1 γijkj

1
ε
∆tnG(Ui ) +

Pi−1
j=1 γij lj

!
, i = 1, . . . , s

un+1 = un +
sX

i=1

biki

pn+1 = pn +
sX

i=1

bi li

where W11 ≈ ∂F (un, pn)/∂u, W12 = ∂F (un, pn)/∂p, W21 = ∂G(un)/∂u
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Rosenbrock W methods for differential algebraic equations (DAE)

Multiplying by ε and ε→ 0

Ui = un +
i−1X
j=1

aijkj

Pi = pn +
i−1X
j=1

aij lj

„
I − γ0∆tnW11 −γ0∆tnW12

−γ0∆tnW21 0

«„
ki

li

«
=

„
∆tnF (Ui ,Pi ) +

Pi−1
j=1 γijkj

∆tnG(Ui )

«
, i = 1, . . . , s

un+1 = un +
sX

i=1

biki

pn+1 = pn +
sX

i=1

bi li

With a suitable approximation to W in the compressible case almost same
linear algebra
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Compressible case

To reduce further computational cost the following approximation to the
Jacobian are applied

The Jacobian with respect to advection is computed for a first order
approximation in space

For a generic variable χ and advection in x-direction

∂(ρu) ρχ
ρ

∂x

the differentiation with respect to ρ is ignored

(I − γ0∆tW ) is replaced by (I − γ0∆tWT )(I − γ0∆tWS) with
W = WT + WS

WT is an approximation to the transport part, WS is an approximation to
the sound part

Further simplifications are possible for special applications
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General structure of the W matrix with respect to the sound part

Sound part means differentiation of the pressure in the momentum
equations with respect to the thermodynamic variables, differentiation of
the right hand side of the thermodynamic variables with respect to
momentum

WS =

0@ Du Du1GradD1 . . . DusGradDs

DivT1u T1 . . . 0
DivTsu 0 0 Ts

1A
where D and T are diagonal matrices

In the anelastic cases Ti = 0

Choice of the diagonal matrices for the different formulations
Du1 D1 T1u

C 1 ∂p/∂ρθ θ

A ρ0 1 1
P ρ0θ0 1 (ρ0θ0)/ρ
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Our favored Rosenbrock-W-method RosRK3

Underlying explicit Runge-Kutta method is the RK3 method
0

1/3 1/3
1/2 0 1/2

1 0 0 1

Used in the codes WRF, NICAM and COSMO

γ0 = 1

Coefficients a and b
0.33333333333333331
0.20370370370370369 0.50000000000000000

-0.62962962962962965 2.7500000000000000 1.00000000000000000

Coefficients γ

-0.40740740740740738
0.62962962962962965 -2.7500000000000000

Other Rosenbrock-W-methods are available (c.f. Rang and Angermann)
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Translating bubble

Translating bubble, left RosRK3, right Ro3PW (Rang, Angermann)



Introduction Model formulation Rosenbrock W methods Rosenbrock W methods for the flow equations Computational experiments Conclusions

1 Introduction

2 Model formulation

3 Rosenbrock W methods
Rosenbrock W methods
Rosenbrock W methods for differential algebraic equations (DAE)

4 Rosenbrock W methods for the flow equations
Compressible case
General structure of the W matrix with respect to the sound part
Our favored Rosenbrock-W-method RosRK3

5 Computational experiments
Model ASAM
The dry bubble test case
The Bannon test case

6 Conclusions
Need we anelastic approximations
Further work



Introduction Model formulation Rosenbrock W methods Rosenbrock W methods for the flow equations Computational experiments Conclusions

Model ASAM

Method is implemented in the code ASAM (All Scale Atmospheric Model)

Cut cell approach

Cartesian or spherical grid

Block structured for AMR and parallelization

Different time integration methods

asam.tropos.de
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The dry bubble test case

Domain 20.000 m by 10.000 m

∆x = ∆z = 125m, ∆t = 5s

Initial conditions for the unperturbed environment (calm, hydrostatic,
neutrally stable)

Perturbation

∆θ =

(
0 if L > 1.0,

2 cos2(π/2L) if L ≤ 1.0

where

L =

r
(x − xc)2

x2
r

+
(z − zc)2

z2
r

with xc = 10000m, zc = 2000m, and xr = zr = 2000m

Simulation time 1000 s
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Perturbation potential temperature

Perturbation potential temperature for the anelastic case

Perturbation potential temperature for the pseudo incompressible case
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Vertical velocity

Vertical velocity for the anelastic case

Vertical velocity for the pseudo incompressible case
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Vertical velocity

Comparison of minimal and maximal vertical velocity
Compressible

300 13.700 -7.922
Anelastic

290 13.725 -8.046
300 13.733 -7.946
310 13.596 -7.774

Pseudo
290 13.580 -7.983
300 13.684 -7.948
310 13.761 -7.864
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The Bannon test case

Domain 400000 m by 30.000 m

∆x = ∆z = 200m, ∆t = 5s

Initial conditions for the unperturbed environment (calm, hydrostatic,
nonisothermal)

Until 11000 m a lapse rate of 6.5Km−1, above isothermal

Perturbation

∆θ =

(
0 if L > 1.0,

4 cos2(π/2L) if L ≤ 1.0

where

L =

r
(x − xc)2

x2
r

+
(z − zc)2

z2
r

with xc = 200000m, zc = 3500m, xr = 10000m, and zr = 2500m

Simulation time 1000 s
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Perturbation potential temperature

Initial perturbations of potential temperature compressible left and
anelastic right
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Perturbation potential temperature

Potential temperature perturbation after 1 min compressible left and
anelastic right
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Perturbation potential temperature

Potential temperature perturbation after 10 min compressible left and
anelastic right
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Vertical velocity

Vertical velocityafter 1 min compressible left and anelastic right
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Vertical velocity

Vertical velocity after 10 min compressible left and anelastic right
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Need we anelastic approximations

Need we anelastic approximations

How to choose the background profiles

Sound waves can be eliminated by suitable time integration schemes

Same numerical schemes for sound proofed approximations and full
equations

The linear solver for the for the sound part of the Jacobian is the crucial
bottleneck

Pseudo incompressible numerics are unstable for larger time steps
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Further work

Looking for more optimal methods

Partial linearly implicit Peer and Rosenbrock methods

Stability analysis for approximated Jacobians

Dispersion analysis of the numerical schemes for linearized problems

Adapted pressure solvers for different grid configurations
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