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Motivation
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Structure of simulated convection over heated realistic terrain.

Vertical velocities after 6h of simulated time are shown within the PBL
depth. Grey iso-surfaces represent clouds, and dark green patterns mark
updrafts at boundary layer top. Isolines and other colors show the
topography. The only difference between the two simulations is the
effective viscosity of numerical advection.



Rayleigh number :
g — gravity acceleration
_ h — fluid layer thickness
_ gAf h? v — Kinematic viscosity
Ra = 50 v, — thermal diffusivity
o AB /6 — pot. temperature,
relative change over h
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Ra measures relative magnitude of buoyancy and viscous forces

rigid/stress-free
lower/upper

>> critical

Ra_=1100.657 = critical




In the dry atmosphere:

h= 1000 m

v=17x10°m?s N Ra = 0(1016)
Vg =1.9 x 10° m?/s

A8 /6 = 0(1073)

Thus, how to explain cellular convection ?

Modified definition (sefireys, 1928, Priestley 1962, Ray 1965, Sheu
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Km can be different in the horizontal and in the vertical.

Ra



Possible sources of K and Ra
anisotropy 1n Virtuafnreality

Explicit anisotropic filtering

Using numerical schemes with different
dissipative properties in the horizontal and in the
vertical

Numerical dissipation ~V (flow magnitude), as
oppose to ~0V; e.g., first-order upwinding, or
composite schemes

Prandtl number anisotropy — resulting from, for

example, disparate approximations to governing
equations



Linear theory — effect of viscosity anisotropy
Piotrowski et al, “On numerical realizability of thermal convection” Vol. 228, 2009
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Asymptotic marginal stability relations for a finite Prandtl number and
v, =V, (black solid), v, = 0 (blue circles) and v, = 0 (red squares).
Respective Rayleigh numbers Ra, Ra and Ra are shown in

function of the horizontal wave number Stablllty region is below the
curves.



Generalized governing equations for Rayleigh-Benard convection
for anisotropic viscosity AND Prandtl number anisotropy

Hadamard (entrywise) product

ou \

Momentum eq. a _ _v¢ + ga@Vz un N\ ou ’
00 0 0
Temperature eq. g — ﬂw — /{hahé’ —+ Iivaze :

Continuityeq. V -u=~0 ]
Vector laplacian A := (0,0% + Ag, D,0% + Do, D,0° + /\p)

Scalar laplacian Ao L= Vha;% - %33 7 8}% = a:% + 85 )



8—u=—V¢ + gabVz+ Apbu

ot Disparate approximations to

i = Bw + K020 + Kk,0%0 - momentum equations (full set
v ot 0 of stress tensor entries)

o u — ,

Anisotropic viscosity (coefficients at diagonal entries of stress tensor)



Analogy - Equation set for R-B convection in nematic liquid crystals:

STABILITY OF NEMATIC LIQUID CRYSTALS
UNDER A TEMPERATURE GRADIENT.
CALCULATIONS FOR PAAf%

ATTILA ASKAR% .
The Scientific and Technical Research Council T.B.T.A.K., Inge =7 "7~ 7~
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Uiat s = 0

av, 3
—=-V¢+gabVz+Aou, a0 =G4 vt ) =0
gz Toat tas + pfs "'p(%l')f o0+ U.\U.\,J) =0
—_— /Bw —|— /{ha}%le —|— I{,Uaze , Mg+ maa=({s~ty)+pl,=0
ot o
v U= O _(3_1.+ T+ osTa+qua+q:,=0.
Y

Similarly the constitutive relations read

th==p+(@n—am v,
[o==p+ (A~ An)vas

These equation sets are very similar £y = @i Des + Gt + (@ = @ras)n

in viscous tensor formulation, B = @301+ Anvsy + (@ = aun)is
when L.C. equations are linearized and M2 = Bayy s,
microrotation of crystals neglected. My = Baniaa

gr==(knT,+kiT,)

Q== (kanT\+knT,)



Applying operator of rotation to momentum equations:

(V xu) =gaV x 0Vz +

AoV x uH+HAV x (Vou)
/

This term describes possible production of baroclinic vorticity

4
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Taking rotation once again and considering the vertical component:

%8210 = ga0;0 + |\ 0% w H- kﬁva}% + 0,02)0%w

Equation set for vertical velocity and potential temperature becomes:

o\ (- a2 ) ) ) A
— —k (I/h-|-1/v)@—(l/v—|-l/h)k —p|w=gakd



Assuming solution in Fourier modes:

w=1w(z) exp[i(k.z + kyy) + pt] ,
0=0(z) expli(k,z + kyy) +pt] ; K :=kZ+k2, i:=v-1

d’ 2 d’ 2 2)
(¥ ((J%)d— ot 7)1 = 9ot
d2 2 A
(Hv_dz2 — Kpk® — ﬁ) 0 =—pw. Note that number of parameters is now

effectively reduced, regardless if we consider
v, D or both.

2 | & y 42
(@ _k ) (Vveffd 2 _Vh,effk _p> ( d 7.9 "{'hk2 _p)

= —gak’p.




Linear theory
effects of viscosity anisotropy AND Prandtl number anisotropy
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Fig. 1. Asymptotic marginal stability relations for viscosities
diffusiviti&esolid), viscosity anisotropy ratios

Py = ﬂre sauares) r, = 0,7¢ = 1 (cyan diamonds),[r, = 00,7, =
stars), r, = 00,7 = 0 yellow plus sign); here h and v denote respective values in
the horizontal and the vertical. Corresponding Rayleigh numbers Ra are shown as
functions of the non-dimensional horizontal wave number kH. For each curve the
stability region lies beneath. The square, diamond and plus-sign asymptotics tend

to the 7* limit.




Example of numerical substantiation
Series of LES using the EULAG model

w at time= 4.0 k= 10
cmx,cmn,cnt: @.3000E+01-0.2000E+01 0.5000E+00

32.0 A IHR

M)

dz=50 m
dx=dy=500 m Heat flux
hfx=200 W/m?

, \ Flat lower boundary, doubly periodic
= .. horizontal domain, Boussinesq
option

Reference setup alludes to contemporary,
mesoscale cloud-resolving NWP



Anisotropy viscosity effects

Z.P. Piotrowski et al./Journal of Computational Physics 228 (2009) 6268-6290

y [km]

“16.0 |

-32.0 L L L 7 | o | 4
-32.0 0.0 . 0.0

x [km] x [km]

Fig. 20. Vertical velocity as in lower-left panel of Fig. 17 but for r = 2'/170 with I = —1,1, respectively.
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Disparate approximations and anisotropic viscosity effect combined

Momentum equations Momentum equations
computed with Upwind at computed with MPDATA,
every 4th step, MPDATA for Upwind at every 4" step

temperature equation for temperature equation

w at time= 4.00 k= 10 " at time= R
0 .3500E+01-0 .2000E+01 0.5000FE+00 cmx,cmn,cnt: @.3500E+01-0.2000E+01 0 .5000E+00

cmx,cmn,cnt:




3D 1-2-1 filter 2D spatial 1-2-1 filter

at ti 4.00 k= 10 . e times oo ke 10
nt. 0.2000E+01-0.1250E+01 0 .5000E+00 cmx.cmn.cnt: ©.2500E+01-0.1250E+01 0.5000E+00

e EAE T

Updrafts are stronger with the 2D spatial filtering of
momentum equations. Is the convection more anisotropic as
well ?



Convective structure quantification

2,

g(dx.oy) = S X [w(as 4 dx.y; + 0y)
' nr-ny ' '

Autocorrelation function
1
9

a(oxr,0y) = S;’ilzyil[u'(.ri + 0x,y; + 0y) — w)|w(x;, y;) — W]
o



Diagonal structure function and autocorrelation
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Conclusions

e Cellular convection simulated with meso- and

large-scale models may be only a spurious
result of the effective anisotropic viscosity

« The linear theory has a skill to quantify the
anisotropic viscosity effects

o Implicit numerical viscosity and dispersion are
well known. There appears to be a need for
appreciating "implicit numerical topology”
while analyzing under-resolved convective
structures and cloud coverage



Conclusions

* Prandtl number anisotropy, similar to anisotropic
viscosity, can modify marginal stability of realized
R-B convection

* Linear theory successfully describes joint
influence of anisotropic entries in viscous stress
tensor and the Prandtl number anisotropy,
reducing the number of parameters

* Prandtl number anisotropy can be realized with
controlled disparate approximations to the
governing equations



