

2nd International EULAG Workshop

Beyond MPI – Exploring OpenMP and OpenCL Beyond MPI – Exploring OpenMP and OpenCL
Perspectives of EULAG ParallelizationPerspectives of EULAG Parallelization

Roman Wyrzykowski
Krzysztof Rojek
Łukasz Szustak

[roman, krojek, lszustak]@icis.pcz.pl

Czestochowa University of Technology

Agenda

 The scope of our research on EULAG model
 Motivations
 Architecture of GPU

 Architecture of NVIDIA Tesla C1060
 Architecture of ATI Radeon HD 5870

 OpenCL: emerging standard for multicore
architectures

 Perspectives of EULAG parallelization
 Performance results
 Conclusions and future work

The scope of our research on EULAG model

 EULAG is a numerical solver for all-scale
geophysical flows

 The underlying anelastic equations are either
solved in an EULerian (flux form), or a
LAGrangian (advective form) framework

 Our reasearch includes linear version of
Multidimensional Positive Definite Advection
Transport Algorithm (MPDATA)

Motivations

 Current GPUs are highly efficient, multi-core
processors, which have the computing power of
severalseveral TFLOPSTFLOPS

 GPUs offer a fast, inexpensive solution, but
understanding the parallel tradeoffs is crucial

 GPU allows for creating of many thousands of
threads, which has significant influence on
performance of parallel codes

 Available software (OpenCL, CUDA) facilitates
the implementation of general-purpose
computation on GPU

Architecture of NVIDIA Tesla C1060 (1/2)

 10 processing clusters (TPC)

 3 compute units per processing cluster

 8 processing elements per compute units = 240 240
processing elementsprocessing elements

 1296 MHz – clock fruequency

 16 KB of local memory

 64 KB of constant buffer

 4 GB of global memory

 102.4 GB/s of global memory bandwidth

 It gives 240 * 1.296 * 2 (MADD) = 0.622 TFLOPS 0.622 TFLOPS in
single precision

Architecture of NVIDIA Tesla C1060 (2/2)

Architecture of ATI Radeon HD 5870 (1/2)

 20 compute units

 16 processing elements per compute unit

 5 stream processors per processing element = 1600 1600
stream processorsstream processors

 850 MHz – clock frequency

 32 KB of local memory

 64 KB of constant buffer

 1 GB of global memory

 153.6 GB/s of bandwidth

 It gives 1600 * 0.850 * 2 (MADD) = 2.72 TFLOPS2.72 TFLOPS

Architecture of ATI Radeon HD 5870 (2/2)

OpenCL: emerging standard for multicore
architectures (1/2)

 OpenCL (Open Computing Language) is open,
royalty-free standard for parallel programming
of heterogenous computing systems

 OpenCL standard defines the host API and the
programming language

 OpenCL allows for creating portable code
across different devices and architectures,
including CPUs, GPUs and other processors
like DSPs or Cell\B.E.

OpenCL: emerging standard for multicore
architectures (2/2)

 HostHost is connected to one or more Compute Devices

 Compute Device is a collection of one or more Compute Compute
UnitsUnits

 Compute Unit consist of Processing ElementsProcessing Elements that
execute code as SIMD or SPMD

 KernelKernel – Equivalent to C function executed on Compute
Device

 Kernels are instanced as work-itemswork-items (”threads”) that are
grouped in work-groupswork-groups

 No synchronization between work-groups, they are
independent

 Barriers for synchronizing work-items within work-group

OpenCL: Memory Model (1/2)

OpenCL: Memory Model (2/2)

 Private memoryPrivate memory is assigned per every work-
item

 Local Memory:Local Memory: At least 32KB split into blocks,
each available to any work-item in a given
work-group

 Global/Constant Memory:Global/Constant Memory: Not synchronized
 Host Memory:Host Memory: On the CPU
 Host Memory management is explicit

 You must move data from host → global → local
and back

Perspectives of EULAG Parallelization (1/2)Perspectives of EULAG Parallelization (1/2)

 Our implementation is based on the following part of
MPDATA kernel:
if(j<m && i<n)

 for(k=0; k<l; ++k)

 x(i, j, k)-=

 (f1(i+1, j, k)-f1(i, j, k)

 +f2(i, j+1, k)-f2(i, j, k)

 +f3(i, j, k+1)-f3(i, j, k))/h(i, j, k);

 Where f1,f2,f3 are computed using donnor-cell
scheme:
#define donor(y1,y2,a)(fdim(a,0.0f)*(y1)-fdim(0.0f,a)*(y2))

 dim returns x - y if x > y, +0 if x is less than or equal
to y

Perspectives of EULAG Parallelization (2/2)Perspectives of EULAG Parallelization (2/2)

 2D grid decomposition with group size of nn x mm

 To avoid dependencies between work-groups,
additional work-items are required

 n

m

0 1 2n-1
1
2

m

 2n

m

n n+12n-1
1
2

m

 0,n

m,0

0,0 0,1..........0,n-1
1,0

m-1,0

 0,2n

m,n

0,n 0,n+1.....0,2n-1
1,n

m-1,n

 n

m

0 1 2n-1
1
2

m

 2n

m

n n+12n-1
1
2

m

 m,n

2m,0

m,0 m,1........m,n-1
m+1,0

2m-1,0

 m,2n

2m,n

m,n m,n+1..m,2n-1
m+1,n

2m-1,n

0,0 0,1..........0,n-1
1,0

m-1,0

0,n 0,n+1.....0,2n-1
1,n

m-1,n

m,0 m,1........m,n-1
m+1,0

2m-1,0

m,n m,n+1..m,2n-1
m+1,n

2m-1,n

Code autotuning (1/2)Code autotuning (1/2)

 Optimizations of code on different GPUs
architectures is based on autotunigautotunig technique

 AutotuningAutotuning is a technique of self-adaptation of
algorithm to some features of architecture like:
 Number of compute units (number of work-groups)
 Number of processing elements per compute unit

(size of work-group)
 Preffered vector width (number of floats)
 Size of private and local memory

Code autotuning (2/2)Code autotuning (2/2)

 Autotuning is based on two methods:
 getting some informations about architecture using

OpenCL API and generating compiler directives –
results are generated immediatelyresults are generated immediately

 Preffered vector size, informations about
available resources...

 searching a space of possible solutions and
generating the best setup of algorithm – time time
consuming optimizationconsuming optimization

 Size of work-group, size of local memory...

Performance results (1/2)

 The algorithm was tested on the following
hardware:
 AMD Phenom(tm) II X4 955 Processor – single-

core implementation
 NVIDIA Tesla C1060
 ATI Radeon HD 5870

Performance results (2/2)

CPU NVIDIA Tesla ATI Radeon

Kernel time [s] 0.75 0.041 0.039

Speedup 1 18.29 19.2319.23

Bandwidth [GB/s] - 2.570922.57092 1.35215

Kernel + data reciving time [s] - 0.06 0.08

Speedup - 12.512.5 9.38

Kernel + data sending + data
reciving time [s]

- 0.16 0.27

Speedup - 4.684.68 2.78

Memory usage [MB] 514.016514.016 584.543 584.543

Conclusions

 NVIDIA was tested with Linux operating
system, while ATI used Windows7

 On ATI we achieved beter performance of
computing but worse bandwith than on NVIDIA

 Our code can run on different GPUs
 Performance on GPUs was higher than on CPU
 The implementation is optimized on the very

basic level

Future Work

 GPU+CPU implementation (OpenCL)

 GPUs+CPU (OpenCL)

 GPUs+CPUs + shared memory (OpenCL, OpenMP)

 GPUs+CPUs + distributed memory (OpenCL, MPI)

 Exploring innovative heterogenous technologies like
AMD Fusion (GPUs+CPUs in a single processor)

 Load balancing between GPUs and CPUs

 Implementation of other parts of EULAG code using
GPUs

 Porting our code to Fortran

2nd International EULAG Workshop

Thank YOU for your attention!Thank YOU for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

