

2nd International EULAG Workshop

Beyond MPI – Exploring OpenMP and OpenCL Beyond MPI – Exploring OpenMP and OpenCL
Perspectives of EULAG ParallelizationPerspectives of EULAG Parallelization

Roman Wyrzykowski
Krzysztof Rojek
Łukasz Szustak

[roman, krojek, lszustak]@icis.pcz.pl

Czestochowa University of Technology

Agenda

 The scope of our research on EULAG model
 Motivations
 Architecture of GPU

 Architecture of NVIDIA Tesla C1060
 Architecture of ATI Radeon HD 5870

 OpenCL: emerging standard for multicore
architectures

 Perspectives of EULAG parallelization
 Performance results
 Conclusions and future work

The scope of our research on EULAG model

 EULAG is a numerical solver for all-scale
geophysical flows

 The underlying anelastic equations are either
solved in an EULerian (flux form), or a
LAGrangian (advective form) framework

 Our reasearch includes linear version of
Multidimensional Positive Definite Advection
Transport Algorithm (MPDATA)

Motivations

 Current GPUs are highly efficient, multi-core
processors, which have the computing power of
severalseveral TFLOPSTFLOPS

 GPUs offer a fast, inexpensive solution, but
understanding the parallel tradeoffs is crucial

 GPU allows for creating of many thousands of
threads, which has significant influence on
performance of parallel codes

 Available software (OpenCL, CUDA) facilitates
the implementation of general-purpose
computation on GPU

Architecture of NVIDIA Tesla C1060 (1/2)

 10 processing clusters (TPC)

 3 compute units per processing cluster

 8 processing elements per compute units = 240 240
processing elementsprocessing elements

 1296 MHz – clock fruequency

 16 KB of local memory

 64 KB of constant buffer

 4 GB of global memory

 102.4 GB/s of global memory bandwidth

 It gives 240 * 1.296 * 2 (MADD) = 0.622 TFLOPS 0.622 TFLOPS in
single precision

Architecture of NVIDIA Tesla C1060 (2/2)

Architecture of ATI Radeon HD 5870 (1/2)

 20 compute units

 16 processing elements per compute unit

 5 stream processors per processing element = 1600 1600
stream processorsstream processors

 850 MHz – clock frequency

 32 KB of local memory

 64 KB of constant buffer

 1 GB of global memory

 153.6 GB/s of bandwidth

 It gives 1600 * 0.850 * 2 (MADD) = 2.72 TFLOPS2.72 TFLOPS

Architecture of ATI Radeon HD 5870 (2/2)

OpenCL: emerging standard for multicore
architectures (1/2)

 OpenCL (Open Computing Language) is open,
royalty-free standard for parallel programming
of heterogenous computing systems

 OpenCL standard defines the host API and the
programming language

 OpenCL allows for creating portable code
across different devices and architectures,
including CPUs, GPUs and other processors
like DSPs or Cell\B.E.

OpenCL: emerging standard for multicore
architectures (2/2)

 HostHost is connected to one or more Compute Devices

 Compute Device is a collection of one or more Compute Compute
UnitsUnits

 Compute Unit consist of Processing ElementsProcessing Elements that
execute code as SIMD or SPMD

 KernelKernel – Equivalent to C function executed on Compute
Device

 Kernels are instanced as work-itemswork-items (”threads”) that are
grouped in work-groupswork-groups

 No synchronization between work-groups, they are
independent

 Barriers for synchronizing work-items within work-group

OpenCL: Memory Model (1/2)

OpenCL: Memory Model (2/2)

 Private memoryPrivate memory is assigned per every work-
item

 Local Memory:Local Memory: At least 32KB split into blocks,
each available to any work-item in a given
work-group

 Global/Constant Memory:Global/Constant Memory: Not synchronized
 Host Memory:Host Memory: On the CPU
 Host Memory management is explicit

 You must move data from host → global → local
and back

Perspectives of EULAG Parallelization (1/2)Perspectives of EULAG Parallelization (1/2)

 Our implementation is based on the following part of
MPDATA kernel:
if(j<m && i<n)

 for(k=0; k<l; ++k)

 x(i, j, k)-=

 (f1(i+1, j, k)-f1(i, j, k)

 +f2(i, j+1, k)-f2(i, j, k)

 +f3(i, j, k+1)-f3(i, j, k))/h(i, j, k);

 Where f1,f2,f3 are computed using donnor-cell
scheme:
#define donor(y1,y2,a)(fdim(a,0.0f)*(y1)-fdim(0.0f,a)*(y2))

 dim returns x - y if x > y, +0 if x is less than or equal
to y

Perspectives of EULAG Parallelization (2/2)Perspectives of EULAG Parallelization (2/2)

 2D grid decomposition with group size of nn x mm

 To avoid dependencies between work-groups,
additional work-items are required

 n

m

0 1 2n-1
1
2

m

 2n

m

n n+12n-1
1
2

m

 0,n

m,0

0,0 0,1..........0,n-1
1,0

m-1,0

 0,2n

m,n

0,n 0,n+1.....0,2n-1
1,n

m-1,n

 n

m

0 1 2n-1
1
2

m

 2n

m

n n+12n-1
1
2

m

 m,n

2m,0

m,0 m,1........m,n-1
m+1,0

2m-1,0

 m,2n

2m,n

m,n m,n+1..m,2n-1
m+1,n

2m-1,n

0,0 0,1..........0,n-1
1,0

m-1,0

0,n 0,n+1.....0,2n-1
1,n

m-1,n

m,0 m,1........m,n-1
m+1,0

2m-1,0

m,n m,n+1..m,2n-1
m+1,n

2m-1,n

Code autotuning (1/2)Code autotuning (1/2)

 Optimizations of code on different GPUs
architectures is based on autotunigautotunig technique

 AutotuningAutotuning is a technique of self-adaptation of
algorithm to some features of architecture like:
 Number of compute units (number of work-groups)
 Number of processing elements per compute unit

(size of work-group)
 Preffered vector width (number of floats)
 Size of private and local memory

Code autotuning (2/2)Code autotuning (2/2)

 Autotuning is based on two methods:
 getting some informations about architecture using

OpenCL API and generating compiler directives –
results are generated immediatelyresults are generated immediately

 Preffered vector size, informations about
available resources...

 searching a space of possible solutions and
generating the best setup of algorithm – time time
consuming optimizationconsuming optimization

 Size of work-group, size of local memory...

Performance results (1/2)

 The algorithm was tested on the following
hardware:
 AMD Phenom(tm) II X4 955 Processor – single-

core implementation
 NVIDIA Tesla C1060
 ATI Radeon HD 5870

Performance results (2/2)

CPU NVIDIA Tesla ATI Radeon

Kernel time [s] 0.75 0.041 0.039

Speedup 1 18.29 19.2319.23

Bandwidth [GB/s] - 2.570922.57092 1.35215

Kernel + data reciving time [s] - 0.06 0.08

Speedup - 12.512.5 9.38

Kernel + data sending + data
reciving time [s]

- 0.16 0.27

Speedup - 4.684.68 2.78

Memory usage [MB] 514.016514.016 584.543 584.543

Conclusions

 NVIDIA was tested with Linux operating
system, while ATI used Windows7

 On ATI we achieved beter performance of
computing but worse bandwith than on NVIDIA

 Our code can run on different GPUs
 Performance on GPUs was higher than on CPU
 The implementation is optimized on the very

basic level

Future Work

 GPU+CPU implementation (OpenCL)

 GPUs+CPU (OpenCL)

 GPUs+CPUs + shared memory (OpenCL, OpenMP)

 GPUs+CPUs + distributed memory (OpenCL, MPI)

 Exploring innovative heterogenous technologies like
AMD Fusion (GPUs+CPUs in a single processor)

 Load balancing between GPUs and CPUs

 Implementation of other parts of EULAG code using
GPUs

 Porting our code to Fortran

2nd International EULAG Workshop

Thank YOU for your attention!Thank YOU for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

