2" International EULAG Workshop

Beyond MPI - Exploring OpenMP and OpenCL
Perspectives of EULAG Parallelization

Roman Wyrzykowski
Krzysztof Rojek

t ukasz Szustak
[roman, krojek, Iszustak]@icis.pcz.pl

Czestochowa University of Technology

The scope of our research on EULAG model
Motivations

Architecture of GPU

Architecture of NVIDIA Tesla C1060
Architecture of ATlI Radeon HD 5870

OpenCL: emerging standard for multicore
architectures

Perspectives of EULAG parallelization
Performance results
Conclusions and future work

The scope of our research on EULAG model

EULAG is a numerical solver for all-scale
geophysical flows

The underlying anelastic equations are either
solved in an EULerian (flux form), or a
LAGrangian (advective form) framework

Our reasearch includes linear version of
Multidimensional Positive Definite Advection
Transport Algorithm (MPDATA)

Motivations

Current GPUs are highly efficient, multi-core
processors, which have the computing power of
several TFLOPS

GPUs offer a fast, inexpensive solution, but
understanding the parallel tradeoffs is crucial

GPU allows for creating of many thousands of
threads, which has significant influence on
performance of parallel codes

Available software (OpenCL, CUDA) facilitates
the implementation of general-purpose
computation on GPU

Architecture of NVIDIA Tesla C1060 (1/2)

10 processing clusters (TPC)
3 compute units per processing cluster

8 processing elements per compute units = 240
processing elements

1296 MHz — clock fruequency
16 KB of local memory

64 KB of constant buffer

4 GB of global memory

102.4 GB/s of global memory bandwidth

It gives 240 * 1.296 * 2 (MADD) = 0.622 TFLOPS in
single precision

=2 Local memory

2 Local memory

> Local memory

Local memory

Local memory

Local memory

Local memory

= Local memory

=2 Local memory

=2 Logal memery

2 Local memory

2 Local memory

= Local memary

2 Local memory

= Local memory

Local memeory

Local memory

Local memory

ROP ROP
RCP ROP

TF TF TF TF TF TF TF TF
TF TF TF TF TF TF TF TF

5 3
o e
o o
O o]
o x

e
H
2
L
e
H
e
L
e
L
1
L
1
L
e
L

TF TF TF TF TF TF TF TF
TF TF TF TF TF TF TF TF

Local memory

t

= Local memaory

=2 Lecal memory

=2 Local memary

2 Local memary

2 Loeal memory

=2 Local memory

=} Local memory

¥

ROP | ROP ROP ROP ROP | ROP ROP | ROP ROFP @ ROP ROP @ ROP
ROP ROP ROP ROP ROP ROP ROP ROP ROP ROP ROP ROP

Triangle setup

Pixel thread setup
TF TF TF TF TF TF TF TF
TF TF TF TF TF TF TF TF

TF

TF TF TF TF TF TF TF
TF TF TF TF TF TF TF TF

2 Local memory

TF TF TF

2 Local memory

Local memory

Vertex thread setup

N
—
S
QO
O
Q
1
O
©
N
D
-
<
=
S
=
(T
o
()
-
=)
wid
&)
()
=
=
o
-
<

TF TF TF TF TF TF TF TF

TF TF TF TF TF

Architecture of ATI Radeon HD 5870 (1/2)

20 compute units
16 processing elements per compute unit

5 stream processors per processing element = 1600
stream processors

850 MHz — clock frequency
32 KB of local memory

64 KB of constant buffer

1 GB of global memory
153.6 GB/s of bandwidth

It gives 1600 * 0.850 * 2 (MADD) = 2.72 TFLOPS

Architecture of ATl Radeon HD 5870 (2/2)

Fa '_...

[I i E
== J= o} o i -+ =111
gkt L Itk it
d o b o bl -

| | |
|

] [Memory Controller] l Memory Controller M
[N 1 O N OO O O B

OpenCL: emerging standard for multicore

architectures (1/2)

OpenCL (Open Computing Language) is open,
royalty-free standard for parallel programming
of heterogenous computing systems

OpenCL standard defines the host APl and the
programming language

OpenCL allows for creating portable code
across different devices and architectures,

including CPUs, GPUs and other processors
like DSPs or Cell\B.E.

OpenCL: emerging standard for multicore

architectures (2/2)

Host is connected to one or more Compute Devices

Compute Device is a collection of one or more Compute
Units

Compute Unit consist of Processing Elements that
execute code as SIMD or SPMD

Kernel — Equivalent to C function executed on Compute
Device

Kernels are instanced as work-items ("threads”) that are
grouped in work-groups

No synchronization between work-groups, they are
iIndependent

Barriers for synchronizing work-items within work-group

OpenCL: Memory Model (1/2)

Compute Device

ﬂompute Unit O (work—groum

Private Private

Memory$ Memory$
v

Work- Work-
itemO itemN

ﬁompute Unit N (work—grouh

Private Private

Memory¢ MEIT\O"V$
 /

Work- Work-
itemO itemN

Local Menjory /

k‘LLocal Menjory /

Global (and constant) memory

ey

OpenCL: Memory Model (2/2)

Private memory is assigned per every work-
item

Local Memory: At least 32KB split into blocks,
each available to any work-item in a given
work-group

Global/Constant Memory: Not synchronized
Host Memory: On the CPU

Host Memory management is explicit

You must move data from host — global — local
and back

Perspectives of EULAG Parallelization (1/2)

Our implementation is based on the following part of
MPDATA kernel:

1f(J<m && i<n)
for (k=0; k<1; ++k)
x(1, J, k)-=
(£1(i+1, 3, k)-f1(i, 7J, k)
+f2 (1, J+1, k)-f2(1, 3, k)

+£f3(1i, 3J, k+1)-£f3(i, 3, k))/h(i, 3, k)

Where £1, £2, £3 are computed using donnor-cell
scheme:

#define donor(yl,v2,a) (fdim(a,0.0f) *(yl)-£fdim(0.0£f,a) * (y2))

dimreturns x - yifx>y, +0 if x is less than or equal
toy

Perspectives of EULAG Parallelization (2/2)

2D grid decomposition with group size of n x m

To avoid dependencies between work-groups,
additional work-items are required

0,00,1.......... 0,n-1
1,0

O,n 0,n+1.....0,2n-1
1,n

m-1,0 m-1,n
m,0m,1........ m,n-1 m,n m,n+1..m,2n-1
m+1,0 m+1,n

2m-1,0 2m-1,n

0,00,1.......... 0,n-10,n|0,n0,n+1.....0,2n-10,2n
1,0 1,n

m-1,0 m-1,n

m,0 m,n

m,0m,1........ m,n-1 /M,Nm,n m,n+1..m,2n-1 M,2n
m+1,0 m+1,n

2m-1,0 2m-1,n

2m,0 2m,n

Code autotuning (1/2)

Optimizations of code on different GPUs
architectures is based on autotunig technique

Autotuning is a technique of self-adaptation of
algorithm to some features of architecture like:

Number of compute units (number of work-groups)

Number of processing elements per compute unit
(size of work-group)

Preffered vector width (number of floats)
Size of private and local memory

Code autotuning (2/2)

Autotuning is based on two methods:

getting some informations about architecture using
OpenCL API and generating compiler directives —
results are generated immediately

Preffered vector size, informations about

available resources...

searching a space of possible solutions and
generating the best setup of algorithm — time
consuming optimization

Size of work-group, size of local memory...

Performance results (1/2)

The algorithm was tested on the following
hardware:

AMD Phenom(tm) Il X4 955 Processor — single-
core implementation

NVIDIA Tesla C1060
ATl Radeon HD 5870

Performance results (2/2)

Kernel time [s] 0.041
Speedup 1 18.29
Bandwidth [GB/s] - 2.57092
Kernel + data reciving time [s] - 0.06
Speedup - 12.5
Kernel + data sending + data
PR - 0.16
reciving time [s]
Speedup - 4.68

Memory usage [MB] 514.016 584.543

0.039

19.23

1.35215

0.08

9.38

0.27
2.78

584.543

Conclusions

NVIDIA was tested with Linux operating
system, while ATl used Windows7

On ATI we achieved beter performance of

computing but worse bandwith t
Our code can run on different G

nan on NVIDIA

PUs

Performance on GPUs was higher than on CPU

The implementation is optimized on the very

basic level

PU+CPU implementation (OpenCL)

PUs+CPU (OpenCL)

PUs+CPUs + shared memory (OpenCL, OpenMP)
GPUs+CPUs + distributed memory (OpenCL, MPI)

Exploring innovative heterogenous technologies like
AMD Fusion (GPUs+CPUs in a single processor)

G O O

Load balancing between GPUs and CPUs

Implementation of other parts of EULAG code using
GPUs

Porting our code to Fortran

2" International EULAG Workshop

Thank YOU for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

