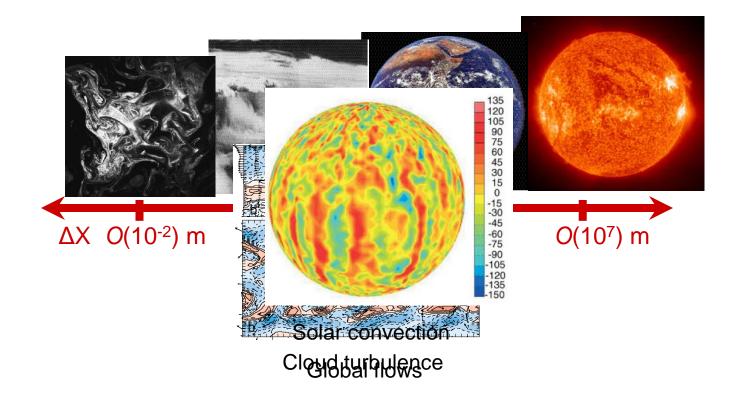
Numerical merits of anelastic models

Piotr K Smolarkiewicz*,

National Center for Atmospheric Research, Boulder, Colorado, U.S.A.



*The National Center for Atmospheric Research is supported by the National Science Foundation

EULAG's key options

Supported (operational in demo codes) and "private" (hidden or available in some clones)

Two options for integrating fluid PDEs with nonoscillatory forward-in-time Eulerian (control-volume wise) & semi Lagrangian (trajectory wise) model algorithms, but also Adams-Bashforth Eulerian scheme for basic dynamics

Preconditioned non-symmetric Krylov-subspace elliptic solver, but also the pre-existing MUDPACK experience. Notably, for simple problems in Cartesian geometry, the elliptic solver is direct (viz. spectral preconditioner).

Generalized time-dependent curvilinear coordinates for grid adaptivity to flow features and/or complex boundaries, but also the immersed-boundary method.

PDEs of fluid dynamics (comments on nonhydrostacy ~ g, xy 2D incompressible Euler):

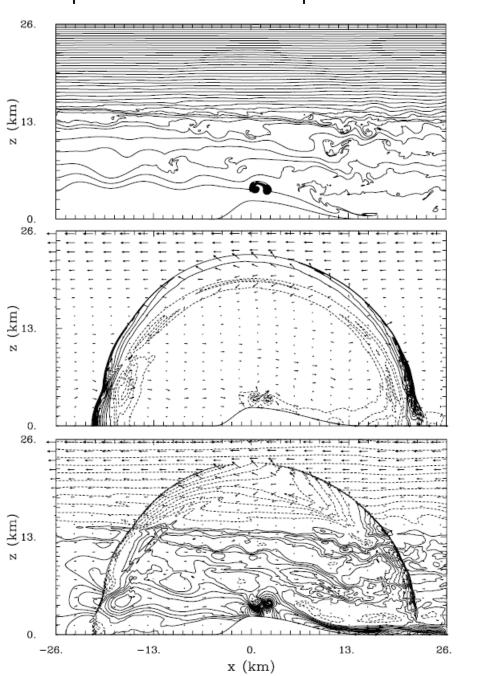
- Anelastic (incompressible Boussinesq, Ogura-Phillips, Lipps-Hemler, Bacmeister-Schoeberl, Durran)
- Compressible Boussinesq
- Incompressible Euler/Navier-Stokes' (somewhat tricky)
- Fully compressible Euler/Navier-Stokes' for high-speed flows (3 different formulations).
- Boussinesq ocean model, anelastic solar MHD model, a viscoelastic ``brain'' model, porous media model, sand dunes, dust storma, etc.

Physical packages:

- Moisture and precipitation (several options) and radiation
- Surface boundary layer
- ILES, LES, LES, DNS

Analysis packages: momentum, energy, vorticitiy, turbulence and moisture budgets

Example of anelastic and compressible PDEs

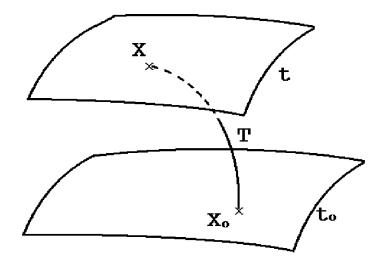


Numerics related to the "geometry" of an archetype fluid PDE/ODE

 $\begin{array}{ll} \textit{Eulerian} \mbox{ conservation law } & \textit{Lagrangian} \mbox{ evolution equation} \\ \hline \frac{\partial \rho^* \psi}{\partial \overline{t}} + \overline{\nabla} \bullet (\rho^* \overline{\mathbf{v}}^* \psi) = \rho^* R & \Leftrightarrow & \frac{d \psi}{d \overline{t}} = R \\ \psi \equiv v^j \mbox{ or } \theta' & \mbox{ Kinematic or thermodynamic variables, R the associated rhs} \end{array}$

Either form is approximated to the second-order using a template algorithm:

$$\psi_{\mathbf{i}}^{n+1} = LE_{\mathbf{i}}(\psi^n + 0.5\Delta tR^n) + 0.5\Delta tR_{\mathbf{i}}^{n+1}$$



Temporal differencing for either anelastic or compressible PDEs, depending on definitions of *G* and Ψ

$$\frac{\partial G\Psi}{\partial t} + \nabla \cdot \left(\mathbf{v} \Psi \right) = GR$$

Forward in time temporal discretization

$$\frac{G^{n+1}\Psi^{n+1} - G^n\Psi^n}{\delta t} + \nabla \cdot (\mathbf{v}^{n+1/2}\Psi^n) = (GR)^{n+1/2}$$

Second order Taylor sum expansion about $=n\Delta t$

$$\frac{\partial G\Psi}{\partial t} + \nabla \cdot (\mathbf{v}\Psi) = GR - \nabla \cdot \left[\frac{\delta t}{2}G^{-1}\mathbf{v}(\mathbf{v}\cdot\nabla\Psi) + \frac{\delta t}{2}G^{-1}\left(\frac{\partial G}{\partial t} + \nabla \cdot \mathbf{v}\right)\mathbf{v}\Psi\right] + \nabla \cdot \left(\frac{\delta t}{2}\mathbf{v}R\right) + \mathcal{O}(\delta t^2)$$

Compensating first error term on the rhs is a responsibility of an FT advection scheme (e.g. MPDATA). The second error term depends on the implementation of an FT scheme

$$\Psi_{i}^{n+1} = LE_{i}(\Psi^{n} + 0.5\Delta tR^{n}) + 0.5\Delta tR_{i}^{n+1}$$

explicit/implicit rhs

implicit: all forcings are assumed to be unknown at *n*+1

$$\psi_{\mathbf{i}}^{n+1} = LE_{\mathbf{i}}(\psi^n + 0.5\Delta tR^n) + 0.5\Delta tR_{\mathbf{i}}^{n+1}$$

 \Rightarrow system implicit with respect to all dependent variables.

On grids co-located with respect to all prognostic variables, it can be inverted algebraically to produce an elliptic equation for pressure

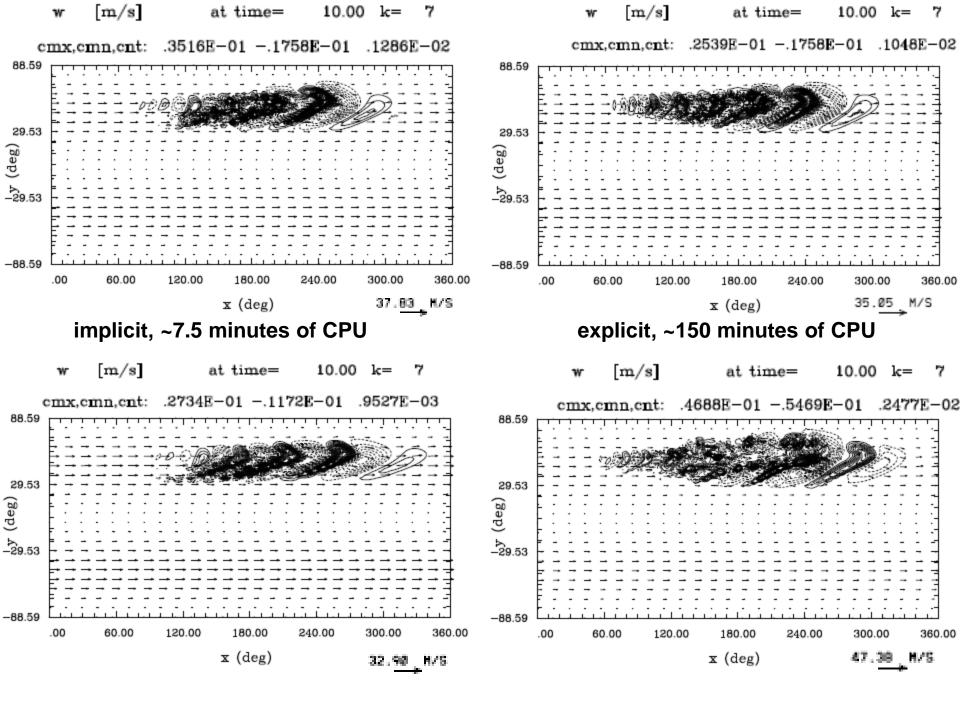
$$\left\{\frac{\Delta t}{\rho^*}\overline{\nabla}\cdot\rho^*\widetilde{\mathbf{G}}^T\Big[\widehat{\widehat{\mathbf{v}}}-(\mathbf{I}-0.5\Delta t\widehat{\mathbf{R}})^{-1}\widetilde{\mathbf{G}}(\overline{\nabla}\pi'')\Big]\right\}_{\mathbf{i}}=0$$

solenoidal velocity $\overline{\mathbf{v}}^s \equiv \overline{\mathbf{v}}^* - \frac{\partial \overline{\mathbf{x}}}{\partial t}$ contravariant velocity $\overline{\mathbf{v}}^* \equiv d\overline{\mathbf{x}}/d\overline{t} \equiv \dot{\overline{\mathbf{x}}}$ $\widetilde{\mathbf{G}}^T[\widehat{\widehat{\mathbf{v}}} - (\mathbf{I} - 0.5\Delta t \widehat{\mathbf{R}})^{-1} \widetilde{\mathbf{G}}(\overline{\nabla}\pi'')] \equiv \overline{\mathbf{v}}^s$

Boundary conditions on π'' Imposed on $\overline{\mathbf{v}}^s \bullet \mathbf{n}$ subject to the integrability condition $\int_{\partial\Omega} \rho^* \overline{\mathbf{v}}^s \bullet \mathbf{n} d\sigma = 0$

Boundary value problem is solved using nonsymmetric Krylov subspace solver - a preconditioned generalized conjugate residual GCR(*k*) algorithm (Smolarkiewicz and Margolin, 1994; Smolarkiewicz et al., 2004)

 $u = u - \frac{1}{2} \frac{2\Phi}{2} - \frac{2\Psi}{2}$ Let 1x **NCAR** O'- O - StwSo W"= ~ [2+2+ + 2+9 (0-2+ w"SOe)) $w^{u+i}(1+\frac{4}{5}\frac{50}{50}eq) = w + \frac{4}{5}\frac{2}{6}0 - \frac{3}{2}\frac{1}{5}$ $W^{n+1} = \frac{W + \frac{N}{2} + \frac{N}{2}$ $w'' = w - \frac{4}{2}F_3 \qquad F_3 = (w - w'')$ $F_3 = \left(w'' - \hat{w} \right) \frac{2}{\chi_{+}} = -\left(w'' - \hat{w} \right)$ 523 FA Fy= At W. Sht the



$$\psi_{\mathbf{i}}^{n+1} = \mathcal{A}_{\mathbf{i}}(\psi^n + 0.5\delta t R^n) + 0.5\delta t R_{\mathbf{i}}^{n+1} \equiv \hat{\psi}_{\mathbf{i}} + 0.5\delta t R_{\mathbf{i}}^{n+1}; \tag{9}$$

• (9) is implicit for all dependent variables in (6)-(8). To retain this proven structure for the MHD system, (9) is executed in the spirit of

$$\Psi_{\mathbf{i}}^{n+1,\nu} = \widehat{\Psi}_{\mathbf{i}} + 0.5\delta t \, \mathbf{L}\Psi|_{\mathbf{i}}^{n+1,\nu} + 0.5\delta t \, \mathbf{N}\Psi|_{\mathbf{i}}^{n+1,\nu-1} - \nabla\Phi|_{\mathbf{i}}^{n+1,\nu} \implies (10)$$

$$\Psi_{\mathbf{i}}^{n+1,\nu} = \left[\mathbf{I} - 0.5\delta t \,\mathbf{L}\right]^{-1} \left(\widehat{\Psi} + 0.5\delta t \,\mathbf{N}\Psi\right|^{n+1,\nu-1} - \nabla\Phi^{n+1,\nu}\right)|_{\mathbf{i}}$$
(11)

where L and N denote linar and nonlinear part of the rhs R, $\Psi \equiv (\mathbf{v}, \theta', \mathbf{B})$, $\Phi \equiv 0.5\delta t(\phi, \phi, \phi, 0, \phi^*, \phi^*, \phi^*)$, and $\nu = 1, ..., m$ numbers the iterations.

 $\begin{aligned} \frac{D\mathbf{v}}{Dt} &= -\nabla\pi - \mathbf{g}\frac{\theta'}{\theta_o} + 2\mathbf{v}' \times \Omega + \frac{1}{\mu\rho_o} \left(\mathbf{B} \cdot \nabla\right) \mathbf{B} + \mathcal{D}_{\mathbf{v}}, \\ \frac{D\theta'}{Dt} &= -\mathbf{v} \cdot \nabla\theta_e + \mathcal{H} - \alpha\theta', \\ \frac{D\mathbf{B}}{Dt} &= -\nabla\pi^* + \left(\mathbf{B} \cdot \nabla\right) \mathbf{v} - \mathbf{B}(\nabla \cdot \mathbf{v}) + \mathcal{D}_{\mathbf{B}}, \\ \nabla \cdot \left(\rho_o \mathbf{v}\right) &= 0, \, \nabla \cdot \mathbf{B} = 0, \end{aligned}$

$$\mathbf{B}_{i}^{n+1,\nu-1/2} = \widehat{\mathbf{B}}_{i} + 0.5\delta t \left[(\mathbf{B}^{n+1,\nu-1/2} \cdot \nabla) \mathbf{v}^{n+1,\nu-1} - \mathbf{B}^{n+1,\nu-1/2} (\nabla \cdot \mathbf{v}^{n+1,\nu-1}) \right]_{i};$$

$$\begin{split} \theta'|_{\mathbf{i}}^{n+1,\nu} &= \widehat{\theta'}_{\mathbf{i}} - 0.5\delta t \left(\mathbf{v}^{n+1,\nu} \cdot \nabla \theta_{e} \right)_{\mathbf{i}} ,\\ \mathbf{v}_{\mathbf{i}}^{n+1,\nu} &= \widehat{\mathbf{v}}_{\mathbf{i}} + \frac{0.5\delta t}{\mu \rho_{s}} (\mathbf{B} \cdot \nabla \mathbf{B})_{\mathbf{i}}^{n+1,\nu-1/2} \\ &- 0.5\delta t \left[\nabla \phi |^{n+1,\nu} + \mathbf{g} \frac{\theta'|^{n+1,\nu}}{\theta_{s}} + \mathbf{f} \times (\mathbf{v}^{n+1,\nu} - \mathbf{v}_{e}) \right]_{\mathbf{i}} ,\\ \cdot \left(\rho_{s} \mathbf{v}^{n+1,\nu} \right) &= 0 , \end{split}$$

solve for $\phi^{n+1,\nu}$, $\mathbf{v}^{n+1,\nu}$ and $\theta'|^{n+1,\nu}$ via elliptic problem for $\phi^{n+1,\nu}$;

 ∇

$$\mathbf{B}_{i}^{n+1,\nu-3/4} = \widehat{\mathbf{B}}_{i} + 0.5\delta t \left[(\mathbf{B}^{n+1,\nu-3/4} \cdot \nabla) \mathbf{v}^{n+1,\nu} - \mathbf{B}^{n+1,\nu-3/4} (\nabla \cdot \mathbf{v}^{n+1,\nu}) \right]_{i};$$

$$\begin{split} \mathbf{B}_{\mathbf{i}}^{n+1,\nu} &= \widehat{\mathbf{B}}_{\mathbf{i}} + 0.5\delta t \left[(\mathbf{B}^{n+1,\nu-3/4} \cdot \nabla) \mathbf{v}^{n+1,\nu} - \mathbf{B}^{n+1,\nu-3/4} (\nabla \cdot \mathbf{v}^{n+1,\nu}) \right]_{\mathbf{i}} \\ &- 0.5\delta t \nabla \phi^* |^{n+1,\nu} , \\ \nabla \cdot \mathbf{B}^{n+1,\nu} &= 0 , \end{split}$$

solve for $\phi^*|^{n+1,\nu}$ and $\mathbf{B}^{n+1,\nu}$ via elliptic problem for $\phi^*|^{n+1,\nu}$.

Other examples include moist, Durran and compressible Euler equations. Designing principles are always the same:

$$\frac{\partial \Phi}{\partial t} + \nabla \bullet (\mathbf{V} \Phi) = \mathbf{R} \; ,$$

 $\forall_i \quad \Phi_i^{n+1} = \Phi_i^* + 0.5 \delta t \mathbf{R}_i^{n+1} \qquad \Phi^* \equiv \mathcal{A}(\Phi^n + 0.5 \delta t \mathbf{R}^n, \widehat{\mathbf{V}}^{n+1/2})$

$$\forall_i \quad \mathbf{\Phi}_i^{n+1,\ \mu} = \mathbf{\Phi}_i^* + 0.5\delta t \mathbf{R}_i^{n+1,\ \mu-1}$$

$$\begin{array}{ll} \parallel \Phi^{n+1, \ \mu} - \Phi^{n+1} \parallel &= 0.5\delta t \parallel \mathbf{R}(\Phi^{n+1, \ \mu-1}) - \mathbf{R}(\Phi^{n+1}) \parallel \\ &\leq 0.5\delta t \ \sup \parallel \partial \mathbf{R}/\partial \Phi \parallel \parallel \Phi^{n+1, \ \mu-1} - \Phi^{n+1} \parallel \end{array}$$

Dynamic grid adaptivity

Prusa & Sm., JCP 2003; Wedi & Sm., JCP 2004, Sm. & Prusa, IJNMF 2005

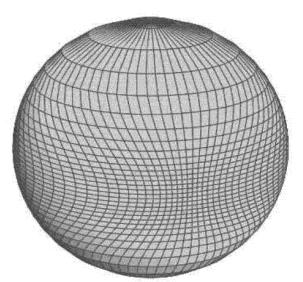
- A generalized mathematical framework for the implementation of deformable coordinates in a generic Eulerian/semi-Lagrangian format of nonoscillatoryforward-in-time (NFT) schemes
- Technical apparatus of the Riemannian Geometry must be applied judiciously, in order to arrive at an effective numerical model.

Diffeomorphic mapping

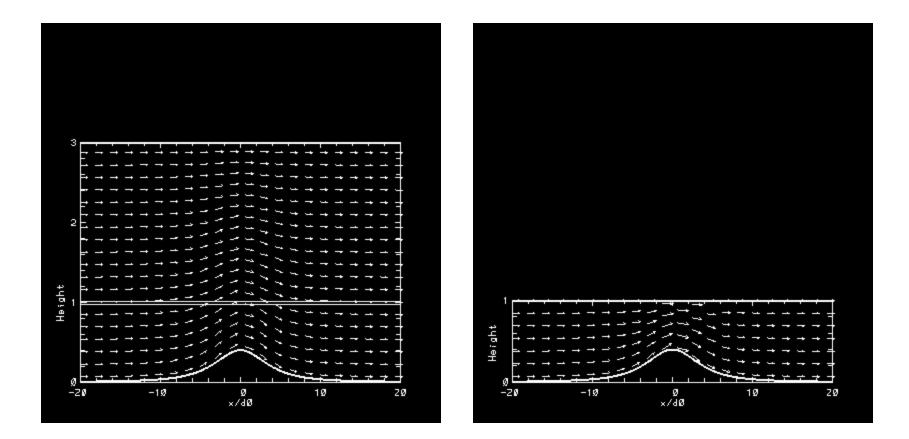
$$(\overline{t}, \overline{x}, \overline{y}, \overline{z}) \equiv (t, E(t, x, y), D(t, x, y), C(t, x, y, z))$$

(t,x,y,z) does not have to be Cartesian!

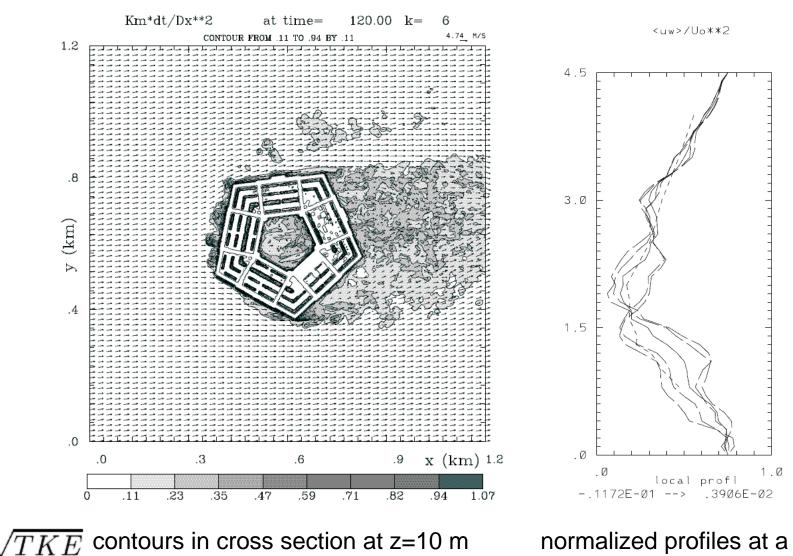
Example: Continuous global mesh transformation



Example of free surface in anelastic model (Wedi & Sm., JCP, 2004)



Example of IMB (Urban PBL, Smolarkiewicz et al. 2007, JCP)



normalized profiles at a location in the wake $\langle u'w' \rangle$

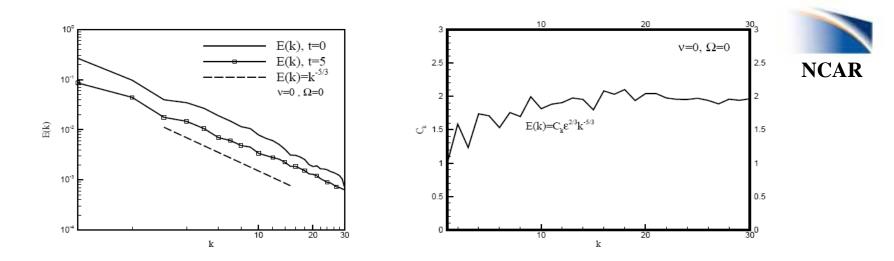
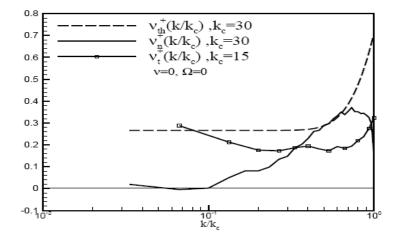
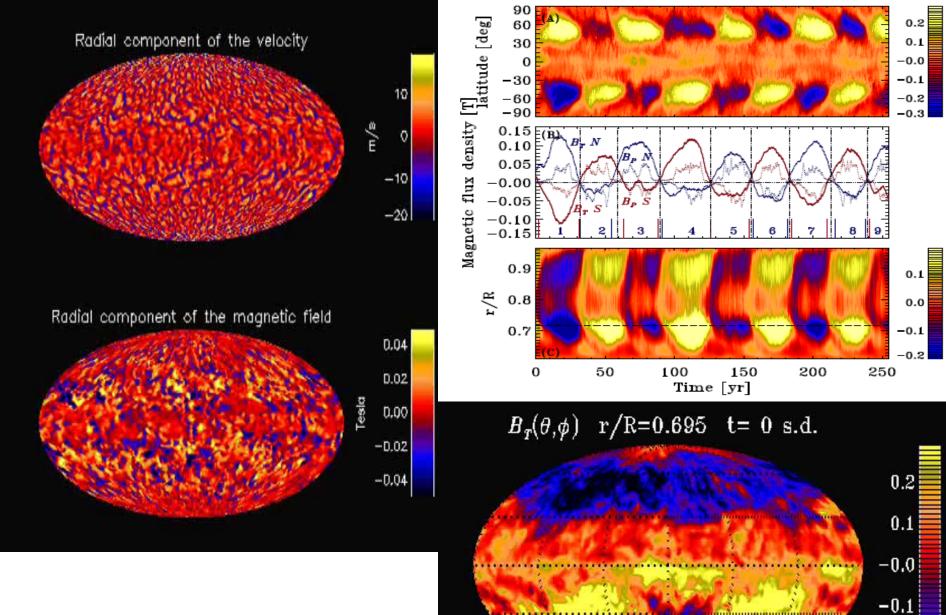


Figure 4: 64³ ILES of decaying turbulence, Domaradzki et al. *Phys. Fluids* 2003. Energy spectra and Kolmogorov function $C_K(k) = \varepsilon^{-2/3} k^{5/3} E(k) \, dla \, \nu = 0.0$ $\Leftrightarrow \langle (\delta v_{\parallel}(l))^2 \rangle \sim l^{2/3}$

$$\frac{\partial E(k,t)}{\partial t} = T(k,t) - 2\nu k^2 E(k) - \varepsilon_n(k,t) \Rightarrow \varepsilon_n := 2\nu_n k^2 E(k) \Rightarrow \nu_n(k)$$





-0.2

-0.3

Toroidal component of **B** in the uppermost portion of the stable layer underlying the convective envelope at $r/R \approx 0.7$ \rightarrow