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Nonhydrostatic, anelastic, Navier-Stokes equations.

- Continuous adaptive mesh refinement (horizontal & vertical)

- “terrain-following” grid transformation (upper, lower boundary)

- IMB methods to simulate urban flows

- Passive tracer for T&D modeling

Model formulation
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EULAG Immersed Boundary scheme

Forced damped 
harmonic oscillator

Continuous feedback forcing approach for rigid boundaries - fictitious body 
forces introduced in equations of motion to represent internal boundaries 
(Goldstein et al. 1993), zero-order boundary reconstruction (stepwise geometry).

For consistency with model NFT assume Crank-Nicholson time discretization  

Explicit part

Compact closed form of trapezoidal integral
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EULAG Immersed Boundary scheme

Simplifications:               (no sensitivity within tested problems range)

Forcing term A:  

In general nontrivial external forcing A requires variable in time 
In problems at hand primary forcing is representing pressure gradient 

terms which responds instantaneously to the flow distortions

- large scale component: 
- rapidly oscillating part: 
- in both cases attenuation time                             is effective                   

but allows for residual flow within building structures
- shorter time scale give stable but oscillatory solution
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EULAG Immersed Boundary scheme

residual flow within 
object structures

No external forcing:  no 
pressure gradients within 
building - solution damps to 
zero within single time step.
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IMB vs “terrain following” 
smooth topography

From Lundquist et al. 2010  
IMB implementation in WRF

- direct forcing of Mohd-
Yusof (1997) 

- velocity or scalar value is 
modified at forcing points 
near the boundary to enforce 
the boundary
conditionWitch of Agnesi
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• Building description derived from 1m resolution 
lidar dataset (April 2001)

• Domian: 600x600x31 @ Δx=Δy=Δz=2m
• 7200 time steps @ Δt=0.05 s
• Rigid upper boundary
• Specified CD on building and sfc
• Neutral stratification with prescribed velocity profile 

from standard LES simulations (Moeng and Sullivan)

simplified modelUntouched 1m data

IMB vs “terrain following” 
complex structures (e.g Pentagon)
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EULAG instantaneous 
vertical velocity field

US EPA Meteorological Wind Tunnel 
at Fluid Modeling facility

IMB vs “terrain following” 
complex structures
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EULAG instantaneous vertical velocity fields

IMB vs “terrain following” 
complex structures
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Vertical profiles in 
the building wakeVelicity profiles 

Fluctuation fields

solid – IMB
dashed – TF
circles -observation

IMB vs “terrain following” 
complex structures
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EULAG instantaneous vertical velocity fields

IMB vs “terrain following” 
complex structures

low Froude number

or strongly stratified flow



NCAR/RAL - National Security Applications Program
12

w field
neutral
U=5 m/s

Application to flow around simple 
building structures
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z=2m above rooftop Vertical plane along dashed line

h

h
Turbulent zone

Recirculation
zone

Building wake
Frontal
vortex

Flow around simple building structures

5 m/s
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Bias proportional to acceleration over rooftop

Wake
Turbulence
zones

10 m
Bias proportional to mean wind shear

Redrawn from Wilson 1979

Assessment of building-induced errors from rooftop anemometer 
observations for mesoscale NWP & T&D applications

Building effects typically extend at least one building height above rooftop
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Eulag anemometer 
winds

•Anbient flow

- Eulag rooftop 
winds at 9 
locations

5 m/s

Assessment of building-induced errors from rooftop anemometer 
observations for mesoscale NWP & T&D applications
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Application - DCNet

• Actual urban environment and building shapes – 1m resolution
• Time-averaged readings from anemometer winds 10 m above rooftop
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Application - DCNet

● DCNet rooftop 
anemometer locations

7 buildings with rooftop anemometers, all at 10m above rooftop

CON-BEA vector wind difference 
after RTFDDA simulation time= 12 
hrs. at 40 m AGL (max ~ 5 m/s)
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SCIPUFF derived dosages for SF6 release at 1100 UTC

CON BEA

1200 UTC

1330 UTC

• MM5/RTFDDA 4 nests
– 40.5, 13.5, 4.5, 1.5 km
– Start: 0Z 13 Jan 2005
– End:  0Z 14 Jan 2005

• 3 runs
– NAT: No assimilation 

of wind observations
– CON: Assimilation of 

nature (NAT) run
– BEA: Assimilation of 

EuLag-generated 
building winds

– Assimilations over 
first 11 h, free 
forecast over last 13 
hours
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Multiscale urban flows

Mesoscale modeling system:
WRF-Noah/UCM forecast model

Urban T&D modeling system:
EULAG LES/CFD model

WRF provides initial and lateral boundary conditions for EULAG in two modes
• Isolated sounding data mode – short term, quasi steady conditions, small scale urban domain
• Unsteady (temporal-based coupling) mode – linear interpolation of the WRF data in time and space
→ Building geometry flow features resolved explicitly with immersed boundary (IB) approach

Coupler:

MCEL Library

Turbulence and wind fields explicitly resolved by EULAG are feedback to WRF-urban
• EULAG fields are volumetrically averaged to (coarser) WRF mesh
• WRF urban framework introduce source terms in the momentum and turbulence equations
→ The coupling impact urban and downstream weather forecast

Upscale data transfer:

Downscale data transfer

Two way coupling between WRF/EULAG
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WRFv2.2 modeling domains - terrain heights (m) and land-use types

5 two-way nested domains, 
grid spacing and grid sizes:

• D1: 40.5km ( 90* 90*38)
• D2: 13.5km (100*100*38)
• D3: 4.5km  (100*100*38)
• D4: 1.5km  (100*100*38)
• D5: 0.5km  (100*100*38)

Multiscale urban flows
setting up mesoscale model
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Multiscale urban flows
buildings database

National Urban Database and Access Portal Tools (NUDAPT) 

Jason Ching (NERL/USEPA ) 

• Web-based system data download portal

• Source data is stored with daughter Urban Canopy Parameters (UCPs) in a

centralized repository for easy comparison and download
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Multiscale urban flows
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Multiscale urban flows
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Multiscale urban flows
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Multiscale urban flows
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Multiscale urban flows
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Multiscale urban flows
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 WRF Initial and BC: NCEP EDAS data at 40 km resolution 
 12-hour forecast
• Mesoscale  500 m grid dumped at 5 minute intervals
• Data set velocity, temperature, and turbulence fields

EULAG Domain size 1440x1440x300m, 
Flat terrain, uniform grid resolution of ~5m

Oklahoma 
City 
downtown, 
building 
locations at 
Universal 
Transverse 
Mercator 
(UTM) grid

Multiscale urban flows
Joint Urban 2003 experiment, IOP6 daytime case
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EULAG - Validation street level canyon winds

Wind rose plots indicating the presence of an 
end vortex at one of the street ends for a half 
hour period on IOP 06 (July 16, 2003, 09:00-
09:30 hrs. CDT). After Pol and Brown 2004.

EULAG wind filed near Park Ave and Broadway 
at time 9:15 am CDT

PWIDS winds

Multiscale urban flows
Joint Urban 2003 experiment, IOP6 daytime case
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EULAG - Validation street level canyon winds

Time series of velocity fluctuations over a first hour 
of IOP6 cycle on July 16. 

Two  Oklahoma University 3D sonic towers are on 
the south and north side of the street canyon.

- Vertical flow structure
- Turbulence statistics
- Proper time averaging 
- Grid resolution

Comparison of sonic measured wind with LES EULAG simulations. 
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EULAG - T&D SF6 gas tracer concentrations
Dispersion footprint for IOP6 9:00 amIOP6 release scenarios

source located at Botanical Gardens 
(near Sheridan & Robinson). 

Multiscale urban flows
Joint Urban 2003 experiment, IOP6 daytime case
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Multiscale urban flows
Joint Urban 2003 experiment, IOP6 daytime case

Model time series (yellow) of SF6 
tracer sampled during IOP6 vs. 
observations (blue circles)
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Darcy scale flows in porous media

Porous medium

Microscopic flow from DNS

Motivation to use the Navier-Stokes equations 
(DNS) to problems with a broad range of 
hydraulic conductivities depending upon the 
media permeability and viscosity of the fluid

Re 1>

Violation of the creeping motion assumption 
Re 1≥

Transitional range where viscous effects are 
relatively small and the inertial forces dominate
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Stokes’ regime - Stokes’ drag is an effective 
resistive force of porous media on fluid parcels

Microscopic Reynolds number

Re / 1ru ν= 

- characteristic scale of the pores

ν
u
r

- characteristic velocity scale

- kinematic viscosity of fluid
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Random construction of the 
pore space in unit volume

Smolarkiewicz & Winter JCP (2010)

Construction of the pore space horizontally 
inhomogeneous and  changes with height

Stokes properties violated in LES 
of the atmospheric urban flows
1 2~ 10 10r m

5 21.5 10 /m sν −⋅

0 1~ 10 10 /u m s

5 7Re / ~ 10 10ru ν= 

Re 1
Re / 1ru ν= 

Re 1≥

Urban flows analogy / diversity

Flow field dominated by large coherent 
structures and local turbulent fluctuations          
– horizontal inhomogeneity
– properties changes in vertical 

Statistical representation 
of the flow field
properties in the unit 
volume of porous media
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voids

voids solids

V
V V

φ =
+

voidsVsolidsV

3D building structure

dx=dy=4m  dz=3m  dt=0.25s  
N=M=448 L=51

Porosity factor - fraction of the media available for transport, 
and may include both open and closed volumes

Normalized vertical distribution of pores & grains

voidsV solidsV

Characteristics of urban ‘porous’ media

Sparse medium 
- maximum 17% 
of grains
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Pore size frequency distributions

z=0 - red

z=30 - blue

z=60 - green

Characteristics of urban ‘porous’ media

z=0

z=60
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Random construction of the 
pore space in unit volume

Construction of the pore space horizontally 
inhomogeneous and  changes with height
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Averaging true within LES 
model grid volume and in 
areas with small Re number

1
... 1/ ...N

XY x yi
N ∆ ∆=

< > < >∑

Urban flows analogy / diversity

( / )u pκ µ= − ∇ μ - dynamic viscosity 

κ – permeability factor 
(measure of the ability 
to transmit fluids)

Darcy scale flows LES scale flows

- kinematic viscosity ν
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Effective conductivity in function of the model height
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evaluated in voids

Evaluating urban ‘porous’ media analogy

~ rate of flow 
through porous 
material
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Tortuosity  – characteristic nondimensional flow parameter within the porous structures

λ  - length of flow trajectories   
passing  through an arbitrary 
crosssection A in a time unit 

L - length of the media sample 
v – velocity component in l
direction

• quantifies an effective length of a path that fluid must
travel in order to navigate through the media.

• not easily computable with mesh-based methods

• employ Lagrangian displacements δ - tortuosity measure   
which consists of statistics of the Eulerain field

Characteristics of urban media flow
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Structure of the cross wind component of 
the Lagrangian displacements 

Horizontal cross-section at the 
height of 10 m above the ground

Horizontally averaged time history
in the function of the model height.

Domain averaged L2 norms history
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Relation between conductivity, porosity and tortuosity 

3 2 2( ) /( )z T Aκ φ< > < > < > < >

Evaluating urban ‘porous’ media analogy

z=30…45m - red

z=0 …30m  - green

Kozeny-Carmen empirical relation

A - specific footprint of building 
structures (area of building footprint 
per unit volume) 
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• More validation against wind tunnel experiments

• Higher order boundary reconstruction methods

• Near wall flow model

• Sources  (fluxes) for heat and scalars at building 
walls and rooftops

Future work
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