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CAM-EULAG: An excting jungle!!
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Motivation:
The need to iImprove Regional Climate Modelling

» Global Models
= Cover the entire globe

= Simulate the entire
atmosphere

= |Low resolution

» Regional/Mesoscale Models

= over a limited area of the
globe

= High resolution
= Boundary problems
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Boundary Condition Problem
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Boundary Condition Problem
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Features of CAM-EULAG

Static GA:

» for areas of interest
» consistent dynamics over high and low resolution areas
» small scale and large scale features are fully coupled

Dynamic GA:

»>for features of interest

»storm tracks, hurricanes, squall lines, frontal
precipitation, Asian monsoon, tornadoes, convection
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The coupling of CAM3 and EULAG

We adopt the process-spilt method in CEU. Consider the
eeneral prediction equation for a variable ()
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Abiodun et. al (2008a)
(Climate Dynamics)
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=
Adua-Planet Simulation with CAM-EULAG

Cores: EULAG, FV and ESP
Experiment: Aqua-planet
Forcing: Idealized, zonally symmetric SST

Horizontal resolutions : 2°x2.5° [EULAG, FV]
and T42 [ESP]

Vertical grid: 26 levels
Time step: 600s (EULAG), 900s (FV and ESP)

Initialization: Eulag started from rest, FV and
ESP from their standard initial conditions
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Time averages are over 12 months, after spin up.


Zonally Averaged
Zonal Wind

* Westerly Jet cores:
EULAG (55 m/s)
FV (65 m/s)
ESP (60 m/s)
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» Easterly peaks:
EULAG (10 m/s)

FV (10 m/s)
ESP (10 m/s)
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(1) CEU produces the weakest subtropical jets (~55 ms-1) while CFV produces the strongest (~65 m s-1). CES produces jets with the same speed (~60 ms-1) as those in Neale and Hoskins (2000b) control simulation.
(2) The tropical easterlies extend from the surface to 14-15 km (~150 mb) in CFV and CES, and extend from the surface to 13 km (190 mb) in CEU.  In Neale and Hoskins (2000b) tropical easterlies extend through the depth of the model atmosphere. The strongest easterlies below 4 km (600 mb) are about -10 m s-1 in all three models. 
(3) If we were to use the APE physics, the CEU jet would be about 60 m s-1.


Zonally Averaged
Vertical Wind

« Maximum updrafts:
EULAG (4.0 cm/s)
FV (2.2 cm/s)
ESP (1.8 cm/s)

» Updraft locations:

~ + 3° off equator
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(1) The maximums of the tropical ascent are at 9-10 km (300 mb) and are 3o off-equator in both hemispheres. 
(2) CEU simulates the strongest peaks (4.0 cm s-1) while CES produces the weakest (1.8 cm s-1); CFV simulates peaks of 2.2 cm s-1.
(3) CEU’s larger ascent a consequence of non-hydrostatic behavior??


Power Spectra: Kinetic Energy

control
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a plot of kinetic energy spectra that compares the new model to two other CAM dycores (from an earlier run) . In particular note excellent agreement with the planetary Rossby modes in terms of kinetic energy, in contradistinction to predictions by Davies et al. (2003). 
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Presentation Notes
These are aqua-planet simulations.  The continental outline is simply to give a spatial sense to the stretching over the globe.
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Simulation with Static Stretch: Tropical Precipitation
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Tropical
Precipitation

(at the equator)

No spurious
reflections or
abrupt
structure
changes

Periods

UNIF ~ 30 d
DBL ~26d
DBS ~ 26 d

B> 7 mm/d > 9 mm/d
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There is also no spurious reflection at the boundaries of the nested grids (nested in latitude).
The figures are averages from the two rows of grid points adjacent to the equator because the simulations do not have grid points located on the equator. 
The prominent systems propagate somewhat faster in DBL and DBS than in uniform-grid run. They propagate with mean period of 26 days in both DBL and DBS, in contrast to 30 days in the uniform-grid run. 


Aqua-Planet Simulations: Double or Single ITCZ?
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Aqua-Planet Simulations: Double or Single ITCZ?

Influence of Equatorial Waves on Tropical Convection Morphology
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Above: Average precipitation vs. latitude. Increasing
tropical resolution yields a double maximum in the
ITCZ.

Right: Wave amplitude vs. latitude for (a) Kelvin waves and

(b) equatorial Rossby wave, mode 2. Increasing tropical resolution
allows equatorial Rossby waves to occur. Convection coupled to
these waves vields the off-equator ITCS maxima. Increasing
resolutions also gives better definition to Kelvin-wave structure.
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Influence Extratropical Waves on Tropical Convection Strength
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Above: Average precipitation vs. latitude. Increasing
extratropical resolution yields a wider and stronger
Hadley cell. with more ITCZ precipitation. With low

tropical resolution, the ITCZ retains a single maximum.
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Above: Average evaporation vs. latitude. The wider,
stronger Hadley cell increases the fetch for water
imported to the ITCZ, further strengthening tropical
precipitation.

Abiodun et. al (2008b; Climate Dynamics)
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Double vs. single  resolution of trapped equatorial waves
Magnitude dependant upon resolution of mid-latitude baroclinic eddies


- Dynamic Grid Adaptation in CAM-EULAG
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-Initial 2 x 1 (zonal x meridional) degree uniform resolution improved to
1 x 1 degree

- Blue-green box shows central region of grid adaptation

- Grid tracks first sufficiently strong tropical vortex to enter target region,
measured by vorticity 2 5.5x10°s-!
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I would not use “Simulation” - you are showing it anyway.


Simulation of West African Monsoon System

-Real Topography
and Land Use Cover
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-Observed Sea
Surface Temperature
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-Period: 1995 - 2000

Abiodun et. al (2011; Acta Geophysical)
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Global Precipitation (mm/day) in June-August

(b) CRU L eemsreamaer
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West African Monsoon System

(a) GPCP & ERAIM
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Simulation of Southern African Climate

-Real Topography
and Land Use Cover

-Observed Sea
Surface Temperature
Forcing

-Period: 2000 -2002
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Precipitation (mm/day) in December-
February
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Summary

»* CAM-EULAG: a non-hydrostatic global atmospheric model with
capability for static and dynamic grid adaptation is developed,
and the stretching poses no problems

»* CAM-EULAG aqua-planet simulation agrees with those from
standard CAM3

* CAM-EULAG perform better than CFV In simulating West
African climate, even though both models use the same physics
parameterizations. This suggests that resolution of dynamics,
rather than parameterization, may be a key factor

#* Future studies will focus on improving CAM-EULAG simulation
over Southern African region, and on comparing the models
results with those from Regional Climate Models (RCMs)
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