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Motivation 
• Material interfaces may not coincide with the 

computational mesh 
– Arbitrary Lagrangian-Eulerian (ALE) schemes 

• Multimaterial cells 
– Each material has its own mass (density), internal 

energy and pressure 

– Single velocity for the multimaterial nodes 

– Single pressure for the momentum update 

– The closure model is used to generate this pressure, 
and update material variables 



Closure Model Classes 

• Pressure equilibrium/relaxation 

– Tipton’s pressure relaxation model 
• Expression for 𝑝𝑖

𝑛+1/2
 derived assuming the flow is isentropic 

• Relaxation term added resembling linear viscosity 

• Solve a system of linear equations for 𝑝𝑛+1/2 and 𝛿𝑉𝑖
𝑛+1/2

, which has an explicit solution 

• Computed values are used in an internal energy update. 

• Material pressures found by individual equation of state calls 

• Modelling sub-cell dynamics 

– Interface-aware sub-scale dynamics (IASSD) 
• Knowledge of multimaterial cell topology is used to generate fluxes between neighbouring materials 

• Fluxes are optimised based upon limiting constraints for each of the material parameters 

 

 
Shashkov, Int. J. Num. Meth. Fluids, 2007 
 

Barlow, ECCOMAS Computational Fluid Dynamics Conference, 2001 



IASSD Design Principles 

• Preservation of contact 
– If all materials in the multimaterial cell have the 

same initial pressure, they should not change 

 

• Pressure equilibrium 
– After some time, the material pressures should 

equilibrate 

 

• Conservation of total energy 



IASSD Model Overview 
• Each material has its own mass, internal energy and pressure 

 
• Material volumes are determined by associated volume fractions 

 
• The multimaterial cell topology is determined from the Moment 

of Fluid (MoF) interface reconstruction algorithm. 
 

• Material properties are updated via: 
– a bulk update, arising from the overall movement of the cell 
– sub-scale fluxes, arising from material interactions 

 

• Sub-scale fluxes are optimised based upon conditions imposed 
on the material properties  

 
Ahn, Shashkov, J. Comput. Phys., 2007 



IASSD – Cell Topology 
• The MoF interface reconstruction method 

provides a subset of pure polygons and an 
updated centroid for each material 

 

• The intersection of the pure polygons 
provides: 
– the length of the interface, 𝑆𝑖,𝑘, between 

materials 𝑖 and 𝑘. 

– The set of materials neighbouring each material, 
ℳ 𝑖 .  E.g. ℳ 1 = 2,4,5 ,ℳ 4 = 1,3,5  

 

• Maximum volume exchanges are estimated 
from an acoustic Riemann solver 

 

𝛿𝑉𝑖,𝑘
max = −𝛿𝑉𝑘,𝑖

max =
𝑝𝑖 − 𝑝𝑘

𝜌𝑖𝑐𝑖 + 𝜌𝑘𝑐𝑘
𝑆𝑖,𝑘∆𝑡 



IASSD – Positivity of Material Volume 

• The material volumes update is given by 

𝑉𝑖
𝑛+1 = 𝑉𝑖

𝑛 + 𝑓𝑖
𝑛Δ𝑉𝑛+1 +  Ψ𝑖,𝑘𝛿𝑉𝑖,𝑘

max

𝑘∈ℳ(𝑖)

 

 

                                                       bulk update           sub-scale fluxes 

• With the necessary condition 

0 < 𝑉𝑖
𝑛+1 < 𝑉𝑛+1 

       because mass cannot disappear during the Lagrangian calculation. 

 

• In order to optimise the sub-scale fluxes, the volume constraint is chosen as 

𝛼𝑏𝑜𝑡𝑓𝑖
𝑛𝑉𝑛+1 ≤ 𝑉𝑖

𝑛+1 

       with 0 < 𝛼𝑏𝑜𝑡 ≤ 1. 

= 𝑉𝑖
𝑓,𝑛+1

 



IASSD – Positivity of Material Volume 

• The limiter Ψ is desired to be as close to the ‘higher order’ solution (Ψ = 1) as 
possible in the range 0 ≤ Ψ ≤ 1. 

 

• We need to ensure there is at least one choice of Ψ that will always satisfy the 
volume update. 

 

• Setting all Ψ𝑖,𝑘 = 0 :                   𝛼𝑏𝑜𝑡𝑓𝑖
𝑛𝑉𝑛+1 ≤ 𝑉𝑖

𝑛+1                ⇒          0 < 𝑉𝑖
𝑛+1. 

 

       Also, because                                𝑉𝑖
𝑛+1 = 𝑉𝑛+1

𝑖 , 

        

       for an arbitrary 𝑖0, we have      𝑉𝑖0
𝑛+1 = 𝑉𝑛+1 −  𝑉𝑖

𝑛+1
𝑖≠𝑖0

   ⇒           𝑉𝑖0
𝑛+1 < 𝑉𝑛+1 

                                                                                                                  ⇒          𝑉𝑖
𝑛+1 < 𝑉𝑛+1 

> 0 > 0 > 0 

> 0 

= 𝑓𝑖
𝑛𝑉𝑛+1  



IASSD – Positivity of Internal Energy 

• The internal energy update is given by 

𝜀𝑖
𝑛+1 = 𝜀𝑖

𝑛 −
𝑝𝑖
𝑛𝑓𝑖

𝑛

𝑚𝑖
Δ𝑉𝑛+1 −

1

𝑚𝑖
 𝑝𝑖,𝑘

∗ Ψ𝑖,𝑘𝛿𝑉𝑖,𝑘
max

𝑘∈ℳ(𝑖)

 

       where 

𝑝𝑖,𝑘
∗ =

𝜅𝑘
𝑛𝑝𝑖

𝑛 + 𝜅𝑖
𝑛𝑝𝑘

𝑛

𝜅𝑖 + 𝜅𝑘
−

𝜅𝑖𝜅𝑘
𝜅𝑖 + 𝜅𝑘

𝐧 𝑖,𝑘  ⋅ 𝐮𝑘 − 𝐮𝑖  

       with 𝜅 = 𝜌𝑐. 

 

• Internal energy must be positive, so the optimisation condition on the sub-scale 
fluxes is 

𝜀𝑖
𝑛+1 > 0 

 

= 𝜀𝑖
𝑓,𝑛+1

 



IASSD – Positivity of Internal Energy 
• Again, with the limiter in the range 0 ≤ Ψ ≤ 1, we need to ensure that there is at 

least one solution satisfying the positivity constraint. 
 

• Setting all Ψ𝑖,𝑘 = 0 :              𝑚𝑖𝜀𝑖
𝑛 − 𝑝𝑖

𝑛𝑓𝑖
𝑛Δ𝑉𝑛+1 > 0 

 

• Where the internal energy update in this form is assumed to be positive with the 

       following constraint on Δ𝑡  : 
 

– Cell under compression (Δ𝑉𝑛+1 < 0)  :  𝑚𝑖𝜀𝑖
𝑛 − 𝑝𝑖

𝑛𝑓𝑖
𝑛Δ𝑉𝑛+1 > 0                        ⇒   No additional  

                                                                                                                                                             constraint on Δ𝑡. 

– Cell under expansion      (Δ𝑉𝑛+1 > 0)  :  𝑚𝑖𝜀𝑖
𝑛 < 𝑝𝑖

𝑛𝑓𝑖
𝑛Δ𝑉𝑛+1 

       or         Δ𝑉𝑛+1 <
𝑚𝑖𝜀𝑖

𝑛

𝑝𝑖
𝑛𝑓𝑖

𝑛,     and with      𝑚𝑖 = 𝜌𝑖
𝑛𝑉𝑖

𝑛 = 𝜌𝑖
𝑛𝑓𝑖

𝑛𝑉𝑛 

                                                                               𝑝𝑖
𝑛 = 𝛾𝑖 − 1 𝜌𝑖

𝑛𝜀𝑖
𝑛 

                      
Δ𝑉𝑛+1

𝑉𝑛
<

1

𝛾𝑖−1
       which is a constraint on Δ𝑡 because DIV 𝐮 =

𝟏

𝑽

𝒅𝑽

𝒅𝒕
    ⇒  Δt <

1

(𝛾𝑖−1)DIV 𝐮
  

 

> 0 > 0 



IASSD – Pressure Equilibrium 
• The material pressure update is given as 
 

𝑝𝑖
𝑛+1 = 𝑝𝑖

𝑛 −
𝜌𝑖
𝑛 𝑐𝑖

𝑛 2

𝑉𝑖
𝑛 𝑓𝑖

𝑛𝛥𝑉𝑛+1 −
𝜌𝑖
𝑛 𝑐𝑖

𝑛 2

𝑉𝑖
𝑛  Ψ𝑖,𝑘𝛿𝑉𝑖,𝑘

max

𝑘∈ℳ(𝑖)

 

 

• To achieve pressure equilibrium we choose that material pressures will relax to (at least 
not diverge from) an average cell pressure. 

 

𝑝 = 𝑝𝑖
𝑓,𝑛+1

𝑖

 

• If 𝑝𝑖
𝑓,𝑛+1

≥ 𝑝   then we require   𝛼𝑖𝑝 + 1 − 𝛼𝑖 𝑝𝑖
𝑓,𝑛+1

≤ 𝑝𝑖
𝑛+1 ≤ 𝑝𝑖

𝑓,𝑛+1
 

 

• If 𝑝𝑖
𝑓,𝑛+1

≤ 𝑝   then we require                              𝑝𝑖
𝑓,𝑛+1

≤ 𝑝𝑖
𝑛+1 ≤ 𝛼𝑖𝑝 + 1 − 𝛼𝑖 𝑝𝑖

𝑓,𝑛+1
 

 

      where 0 < 𝛼𝑖 < 1 is a parameter to control the rate of equilibration. 

= 𝑝𝑖
𝑓,𝑛+1

 



IASSD – Pressure Equilibrium 
• Ensuring there is a solution to the pressure constraints with 0 ≤ Ψ ≤ 1, we test 

the case that all Ψ𝑖,𝑘 = 0. 
 

• If 𝑝𝑖
𝑓,𝑛+1

≥ 𝑝   then  

                                         𝛼𝑖𝑝 + 1 − 𝛼𝑖 𝑝𝑖
𝑓,𝑛+1

≤ 𝑝𝑖
𝑓,𝑛+1

≤ 𝑝𝑖
𝑓,𝑛+1

 

                        𝛼𝑖𝑝 + 1 − 𝛼𝑖 𝑝𝑖
𝑓,𝑛+1

− 𝑝𝑖
𝑓,𝑛+1

≤      0     ≤ 0 

                                                   𝛼𝑖 𝑝 − 𝑝𝑖
𝑓,𝑛+1

 ≤      0     ≤ 0 

 

• If 𝑝𝑖
𝑓,𝑛+1

≤ 𝑝   then  

                                          𝑝𝑖
𝑓,𝑛+1

≤ 𝑝𝑖
𝑓,𝑛+1

≤ 𝛼𝑖𝑝 + 1 − 𝛼𝑖 𝑝𝑖
𝑓,𝑛+1

 

                                                    0 ≤      0    ≤ 𝛼𝑖𝑝 + 1 − 𝛼𝑖 𝑝𝑖
𝑓,𝑛+1

− 𝑝𝑖
𝑓,𝑛+1

 

                                                  0 ≤      0    ≤ 𝛼𝑖(𝑝 − 𝑝𝑖
𝑓,𝑛+1

) 

> 0 < 0 

> 0 > 0 



IASSD – Limiting Sub-Scale Fluxes 

• A quadratic optimisation scheme with linear constraints is employed to achieve a 
global solution with all Ψ𝑖,𝑘 as close to unity as possible. 

• The optimisation problem is formulated as 

 

maximise      Ψ𝑖,𝑘
2

𝑘∈ℳ(𝑖)

𝑛𝑚𝑎𝑡

𝑖

 

        subject to 

                                       𝛹𝑖,𝑘𝐹𝑖,𝑘
𝛿𝜀

𝑘∈ℳ(𝑖)

≤ 𝑚𝑖𝜀𝑖
𝑓,𝑛+1

 

                                                                                    0 ≤  𝛹𝑖,𝑘𝐹𝑖,𝑘
𝛿𝑉 ≤

𝛼𝑖𝑉𝑖
𝑛

𝜌𝑖
𝑛 𝑐𝑖

𝑛 2 𝑝𝑖
𝑓,𝑛+1

− 𝑝 

𝑘∈ℳ 𝑖

         if   𝑝𝑖
𝑓,𝑛+1

> 𝑝 

max 𝛼𝑏𝑜𝑡 − 1 𝑉𝑖
𝑓,𝑛+1

,
𝛼𝑖𝑉𝑖

𝑛

𝜌𝑖
𝑛 𝑐𝑖

𝑛 2 𝑝𝑖
𝑓,𝑛+1

− 𝑝 ≤  𝛹𝑖,𝑘𝐹𝑖,𝑘
𝛿𝑉 ≤

𝑘∈ℳ 𝑖

0                                                if   𝑝𝑖
𝑓,𝑛+1

< 𝑝 

 

Schittkowski. QL: A Fortran Code for 
Convex Quadratic Programming 



IASSD – Limiting Sub-Scale Fluxes 
Three Material Example 

• The optimisation problem for this multimaterial cell is 
 

              maximise 
 

Ψ1,2
2 +Ψ1,3

2 +Ψ2,3
2  

 

              subject to 

                       𝐹1,2
𝛿𝜀Ψ1,2 + 𝐹1,3

𝛿𝜀Ψ1,3 ≤ 𝑚1𝜀1
𝑓,𝑛+1

 

                    −𝐹1,2
𝛿𝜀Ψ1,2 + 𝐹2,3

𝛿𝜀Ψ2,3 ≤ 𝑚2𝜀2
𝑓,𝑛+1

 

                    −𝐹1,3
𝛿𝜀Ψ1,3 − 𝐹2,3

𝛿𝜀Ψ2,3 ≤ 𝑚3𝜀3
𝑓,𝑛+1

 
 

                                  0 ≤     𝐹1,2
𝛿𝑉Ψ1,2 + 𝐹1,3

𝛿𝑉Ψ1,3 ≤
𝛼1𝑉1

𝑛

𝜌1
𝑛 𝑐1

𝑛 2
𝑝1
𝑓,𝑛+1

− 𝑝  

                                  0 ≤ −𝐹1,2
𝛿𝑉Ψ1,2 + 𝐹2,3

𝛿𝑉Ψ2,3 ≤
𝛼2𝑉2

𝑛

𝜌2
𝑛 𝑐2

𝑛 2
𝑝2
𝑓,𝑛+1

− 𝑝  

 

 

1 

2 
3 

𝑝1
𝑓,𝑛+1

> 𝑝2
𝑓,𝑛+1

> 𝑝 > 𝑝3
𝑓,𝑛+1

 

𝐹𝑖,𝑘
𝛿𝑉 = 𝛿𝑉𝑖,𝑘

max 

𝐹𝑖,𝑘
𝛿𝜀 = 𝑝𝑖,𝑘

∗ 𝛿𝑉𝑖,𝑘
max 

max 𝛼𝑏𝑜𝑡 − 1 𝑉3
𝑓,𝑛+1

,
𝛼3𝑉3

𝑛

𝜌3
𝑛 𝑐3

𝑛 2
𝑝3
𝑓,𝑛+1

− 𝑝 ≤ −𝐹1,3
𝛿𝑉Ψ1,3 − 𝐹2,3

𝛿𝑉Ψ2,3 ≤ 0 

Ψ𝑖,𝑘 = Ψ𝑘,𝑖 

𝐹𝑖,𝑘
𝛿𝑉 = −𝐹𝑘,𝑖

𝛿𝑉 

𝐹𝑖,𝑘
𝛿𝜀 = −𝐹𝑘,𝑖

𝛿𝜀 



Modified Shock Tube 
Initial Conditions 
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Case 1 Case 3 Case 2 

• The modified shock tube is repeated for progressively stronger shocks 
 
• The IASSD and Tipton closure models are benchmarked against pure cell simulations 



Modified Shock Tube 
Internal Energy Profiles 

Pure IASSD Tipton 
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Modified Shock Tube 
Density Profiles 
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Modified Shock Tube 
Pressure Profiles 
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Modified Shock Tube 
Pressure Equilibrium 
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Modified Shock Tube 
Limiter Evolution 

Case 1 Case 2 Case 3 



Small Volume Fraction Shock Tube 
Initial Conditions 
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Case 1 Case 3 Case 2 

• The modified shock tube is repeated with progressively smaller volume fractions 
 
• The IASSD and Tipton closure models are benchmarked against pure cell simulations 



Small Volume Fraction Shock Tube 
Internal Energy Profiles 
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Small Volume Fraction Shock Tube 
Density Profiles 
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Small Volume Fraction Shock Tube 
Pressure Equilibrium 
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Conclusions 
• IASSD material parameters give a good match to the values in 

pure neighbouring cells 

• IASSD behaviour appears less dependent upon the size of the 
shock or volume fractions. 

 

 

 

• Investigate role of parameters 

• Multidimensional 

• Multimaterial (more than two materials) 

• ALE 

Future Work 
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